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Abstract

We develop a model of how a principal motivates innovation by contracting researchers to generate
ideas that improve economic productivity. Because individual contributions are unobservable, the
principal relies on career incentives tied to peer recognition, measured through citations. However,
citations reward not only societal value but also reflect the number of researchers working on a
given topic. As a result, researchers may inefficiently over-coordinate their efforts. This can give
rise to “academic bubbles” in which researchers continue working in areas with little prospect of
advancing knowledge. We empirically analyze the selection of topics in research on the genetic
determinants of human disease. We document that crowding on a narrow set of topics inflates
citation impact, with patterns that point to career concerns as a driver of misallocated scientific
effort.
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1 Introduction
Scientific progress crucially depends on the development of new ideas. Researchers are motivated
by the prospect of receiving credit for their contributions, which is largely awarded to those who are
first to make a discovery public (Merton, 1957; Hill and Stein, 2025b). This priority-based system
converts ideas into reputation, which in turn shapes access to funding and career advancement
(Tuckman and Leahey, 1975; Diamond Jr, 1986; Dasgupta and David, 1994; Abbott et al., 2010;
Ellison, 2013). In practice, however, credit is assigned through citations, which reflect the judgment
of peers who decide which ideas are worth building on. This system offers a practical solution to
a difficult problem: assessing research quality across fields with different methods, audiences, and
standards. After all, what better way to quantify the significance of an idea than by measuring its
influence on other experts in the field, as captured by objective citation counts?

Beyond shaping individual careers, citations play a deeper role in the organization of science. In the
absence of centralized coordination, academia relies on the choices of independent investigators,
each pursuing their own research interests (Polanyi, 1962). Yet these choices collectively determine
which problems are studied and which are ignored, with lasting consequences for public health
and economic growth. Citations help steer this process by concentrating recognition and resources
on topics seen as important or timely. In principle, this rewards researchers for pursuing the most
socially valuable questions (Hill and Stein, 2025a). This logic supports a longstanding faith in
scientific institutions as vehicles for maximizing public benefit (Bush, 1945; Strevens, 2003). It
also informs how recent declines in research productivity are interpreted. If incentives are working
as intended, then the observed slowdown in discovery must be proof that the easy ideas have been
explored and what remains is harder to find (Bloom et al., 2020; Park et al., 2023).

However, there is growing concern that citations might distort the direction of scientific progress.
In systems where career advancement depends heavily on citation counts (Hager et al., 2024),
researchers face strong pressures to avoid exploratory topics that attract little recognition (Wang
et al., 2017) and instead gravitate toward popular areas where citation potential is greatest (Packalen
and Bhattacharya, 2017). As Bhattacharya and Packalen (2020) argue, the widespread reliance on
citations in evaluation skews the balance toward safer, incremental work in established fields. The
result is a coordination trap: researchers cluster around familiar problems not because they are
the most promising, but because they offer the clearest path to professional reward. This dynamic
raises the possibility that the observed slowdown in breakthrough innovation may stem less from
ideas becoming harder to find than from incentives that steer scientists toward increasingly crowded
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domains with diminishing returns.

In this paper, we explore this possibility by framing academic research as a contracting problem
between a principal, society, and many agents, researchers. The principal seeks to incentivize each
agent to exert costly effort to conduct research, but cannot directly observe either that effort or
the importance of the topic the researcher chooses to pursue, at least not until the topic matures.
By contrast, publications and citations are readily observable and, as a result, contractible. While
basing rewards on these imperfect signals may be necessary to sustain scientific effort, doing so can
distort incentives. Researchers with career concerns may rationally gravitate toward less promising
but heavily studied topics in order to secure citations. To examine this problem, we develop a
formal model and test its empirical implications.

In the model, a population of researchers can exert costly effort over time to discover new topics
or to produce findings within an existing one. Each active topic is either significant, meaning it
increases economic output, or insignificant, meaning it reduces it. A topic’s true value is revealed
only upon maturation, which requires continued research activity. At inception, each new topic
comes with a noisy binary public signal indicating whether it is promising, that is, likely to be
significant, or speculative, that is, unlikely to be so. Speculative topics remain unresolved until
they mature, though an active topic may also be downgraded if a negative signal arrives before
maturation. Both discovery and maturation follow Poisson processes, with arrival rates increasing
in the number of researchers working on the topic.

Researchers in our model are motivated by both impact and career advancement. We allow them
to care about the importance of their work through a share in economic output and a preference for
“prestige,” which rises with success on significant topics and falls with failure. At the same time,
they respond to citations, the dominant measure of academic recognition. This creates coordination
incentives that can distort effort. Researchers are drawn to crowded topics where citations are easier
to earn and where their work is more likely to mature. As a result, exploration is insufficient not only
because private risk aversion exceeds social risk aversion, but also because of strategic interaction.
This dynamic leads to the over-researching of speculative topics and the neglect of new ones. It
represents a novel form of moral hazard in teams (Holmstrom, 1982) and parallels the distortions
highlighted in the multi-tasking framework of Holmstrom and Milgrom (1991).

Our model is fully tractable and delivers several key insights. First, when career concerns are
mild, researchers focus only on promising topics and abandon speculative ones. In contrast, when
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career concerns are strong, researchers continue to pursue speculative topics through to maturity.
Working on an active topic—however uncertain—generates citations, while searching for new
topics does not. As a result, strong career incentives reduce the informational value of citations and
lower overall research productivity. Promising topics that initially attract attention continue to be
researched even after negative signals arrive, making it common knowledge that they are unlikely
to be significant. We refer to this persistence as an “academic bubble”. Yet in the absence of career
incentives, effort may be too low to sustain productive research. In that case, academic bubbles
may be a necessary cost of motivating socially beneficial effort.

To test the model, we identify a setting, the study of the genetic determinants of human disease,
which closely parallels its structure. The space of inquiry includes a large but finite set of genes,
each of which may or may not contribute to a human disease. Researchers face a choice between
working on genetic targets that are already under investigation or exploring new genes, mirroring
the model’s distinction between entering crowded topics or seeking out new, potentially significant
ones. We find that publications on well-studied genes receive more citations, that crowded genetic
areas continue to attract researchers even after accounting for ex-ante scientific importance, and
that researchers with plausibly weaker career concerns (because they are likely already tenured or
employed directly by the National Institutes of Health rather than by universities) are more likely
to pursue novel genetic targets rather than join heavily studied ones. These findings support the
model’s predictions and suggest that scientific effort may be significantly misallocated in a domain
of high societal relevance.

These theoretical and empirical findings offer a new perspective on the widely cited decline in idea
generation documented by Bloom et al. (2020) and Park et al. (2023), among others. The problem
may not be that ideas are growing scarce, but rather that researchers are increasingly disincentivized
from searching for them. Instead of exploring new ground, the current system of scientific rewards
encourages concentrating on already crowded topics. This interpretation of scientific stagnation
offers a more hopeful outlook. If the slowdown in research dynamism stems from incentives rather
than from fundamental limits on human ingenuity, then changing how we evaluate and reward
scientific work could help restore the pace of discovery.

Our paper contributes to several distinct but connected literatures. Most broadly, it advances
our understanding of the direction of scientific progress and the forces that distort it (Nelson,
1962). The distortions we examine do not rely on information externalities (Hoelzemann et al.,
2025), economic spillovers (Akcigit et al., 2021), congestion costs (Hopenhayn and Squintani,
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2021), racing dynamics (Bryan and Lemus, 2017), the higher costs of novel projects (Carnehl
and Schneider, 2025), or differences in researchers’ preferences for autonomy (Aghion et al.,
2008). Instead, we contribute to a growing body of work showing that the institutional structure
of science and how it is evaluated can generate misallocation of efforts (Budish et al., 2015; Hill
and Stein, 2025a; Wang et al., 2017). To our knowledge, we are among the first to offer a general
equilibrium characterization of how research unfolds when strong coordination incentives arise
from researchers’ career concerns and risk aversion.

Our paper also relates to the literature on agency problems in innovation. Holmstrom (1989)
examines the internal conflict within firms where innovation competes with other operational
demands. Manso (2011) studies optimal contracts between a principal and an innovating agent,
showing that insurance against failure is essential to sustaining innovative effort. Aghion et al.
(2013) similarly argue that institutional ownership can promote innovation by reducing career risk
for managers. Like these frameworks, we emphasize the role of risk aversion and the value of
insurance in supporting innovation. However, our focus is on a different mechanism: the general
equilibrium effects of the implicit insurance provided by career incentives based on accolades from
peers. In our setting, distortions in the direction of scientific discovery do not arise from coordination
failures, but from deliberate coordination rooted in shared career concerns. Researchers benefit
from concentrating on the same topics, even when the likelihood of success is low. This dynamic
creates contract externalities embedded in the informal relationship between individual researchers
and the academic community.

Finally, our work also connects to the literature on resource misallocation (Hsieh and Klenow, 2009).
For example, Eisfeldt and Rampini (2006) show that capital misallocation is countercyclical, while
reallocation tends to be procyclical. Glode and Lowery (2016) highlight how resources can be
wasted on zero-sum transfers in the financial sector. Other work focuses on the misallocation of
attention due to the cost of acquiring information (e.g., Sims, 2003). While these studies emphasize
the inefficient allocation of production inputs or attention, we examine a different margin: the
consequences of how effort in science and innovation is allocated (Acemoglu, 2023; Myers, 2020).

2 Model
Researchers engage in research in continuous time, with t ≥ 0. They work on topics that ultimately
prove to be either significant or insignificant. Research accelerates the process through which topics
mature, meaning they are either revealed to be unproductive or begin to raise economic output by
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increasing total factor productivity (TFP). This process generates projects that contribute to the
maturation of the topic. These projects, which can be understood as academic papers, also attract
citations and generate citations for others. Researchers have a claim on economic productivity,
seek prestige from working on topics that prove significant, and receive compensation based on
citations to their work. These objectives can align, but they may also be in conflict.

2.1 Fields and Topics

There are L fields in which N ≥ 2 researchers can potentially conduct research. Not all fields
are active at a given time, and we assume L ≫ N so that the set of fields is large relative to the
number of researchers. At some time tlj , a researcher publishes a seminal project j in field l, which
establishes a topic indexed by its inception time. This publication can be interpreted as an academic
journal article. The arrival of a new topic is governed by a compound Poisson process dJ l

t with
compensator λeltdt, where elt =

∑N
n=1 e

n
lt and enlt ∈ {0, 1} denotes the effort that researcher n

devotes to field l. Each field can host only one active topic at a time. If a researcher does not wish
to work on the current topic, they must redirect their effort to another field. Allowing multiple
topics per field or modeling a finite but large set of potential topics would not meaningfully alter
the model’s predictions. In the context of biological sciences, for example, each human gene can
be viewed as a field. Within a gene, researchers may study how it relates to a particular disease,
which corresponds to a topic. Some genes may attract active investigation, while others may be
unexplored.

Once a topic in a field is developed, other researchers can begin working on it. Let rnlt ∈ {0, 1}
indicate whether researcher n is working on the topic in field l at time t. A researcher can either
work on one existing topic or search for a new one, but not both at the same time. For all t ≥ tlj ,
the total number of researchers working on the topic is rlt =

∑N
n=1 r

n
lt. Each of them produces a

project within the topic, and each project cites others in the same line of work. The topic matures at
a random stopping time τ lj > tlj , governed by a second Poisson jump process dBl

t with compensator
λrltdt. The more researchers contribute, the faster the topic matures. This rate may exceed the
rate at which new topics are discovered. In academic research, topic maturity corresponds to a
publication that resolves or decisively critiques the central questions posed by the literature.

When a topic matures, it either results in a significant discovery that advances the field or an
insignificant one that does not. This outcome is indexed byπlj ∈ {0, 1}, whereπlj = 1 indicates that
the topic is significant. The true value of πlj is hidden and remains unknown to researchers until the
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topic matures. At the time of inception, all researchers observe a binary public signal, Slj ∈ {0, 1},
which is drawn randomly and provides imperfect information about whether the topic is likely to
be significant. The signal satisfies Pr(Slj = 1 | πlj = 1) = q1 and Pr(Slj = 1 | πlj = 0) = q0,
where q0 < q1. The prior probability that a new topic is significant is given by p. Using Bayes’
Rule, the posterior belief that a topic is significant after observing the signal Slj is:

Pr (πlj = 1 | Slj = 1) =
Pr (Slj = 1 | πlj = 1)Pr (πlj = 1)

Pr (Slj = 1 | πlj = 1)Pr (πlj = 1) + Pr (Slj = 1 | πlj = 0)Pr (πlj = 0)
,

Pr (πlj = 1 | Slj = 0) =
Pr (Slj = 0 | πlj = 1)Pr (πlj = 1)

Pr (Slj = 0 | πlj = 1)Pr (πlj = 1) + Pr (Slj = 0 | πlj = 0)Pr (πlj = 0)
,

from which it follows that:

Pr (πlj = 1 | Slj = 1) =
pq1

pq1 + (1− p) q0
= p1,

Pr (πlj = 1 | Slj = 0) =
p (1− q1)

1− pq1 − (1− p) q0
= p0.

The consequences of a topic being significant or insignificant are discussed in the sequel. Note that
the unconditional probabilities of each signal realization are given by Pr(Slj = 1) = pq1+(1−p)q0

and Pr(Slj = 0) = 1− pq1 − (1− p)q0.1

After a topic is discovered, researchers may receive additional information beyond the initial signal
Slj that updates their beliefs about the topic’s significance. We model this by introducing a second
signal that may arrive before the topic matures. This second signal arrives according to a Poisson
process dLl

t with compensator ξdt, and it updates researchers’ beliefs about the topic. For simplicity,
we assume this second signal is always a negative update and applies only to topics that initially
received a positive signal. When this negative update arrives, it reduces the perceived probability
that the topic is significant to p0, equivalent to the belief researchers would hold had they observed
a low initial signal, Slj = 0. This second signal can improve economic efficiency by helping
researchers reassess whether active topics are worth pursuing. At the same time, this parsimonious
structure helps to highlight a key inefficiency introduced by career concerns, which we examine in
detail below.

We can then define the following pseudo-probability process plt ∈ {0, p0, p1} with the law of
1In principle, one could allow for persistence in topic success by assuming that the likelihood a new topic is significant
is positively correlated with the significance of the last topic that matured in that field.
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motion

dplt = (Pr (πlj = 1 | Slj)− plt−)
(
dJ l

t − λeltdt
)
+ (p0 − plt−)

(
dLl

t − ξdt
)

+ (0− plt−)
(
dBl

t − λrltdt
)
, (1)

where dBl
t − λrltdt, dLl

t − ξdt, and dJ l
t − λeltdt are three martingale jump processes. The first

updates plt to the conditional probability that the topic is significant, Pr(πlj = 1 | Slj), when a new
topic is discovered. The second updates beliefs when a topic with an initially high signal receives
a negative signal, reducing the perceived likelihood that the topic is significant. Throughout the
remainder of the paper, we refer to topics that receive a high initial signal and no subsequent
negative update as promising. The third process resets plt to zero when the current topic in field l

matures. Because signal arrival rates increase with the number of researchers working on a topic,
the model exhibits social learning and experimentation behavior similar to social bandit strategies.

The cumulative citations received by a researcher who works on the current topic in field l from
time s to t′ are given by

∫ t′

s
(t − s)rlt dt. Accordingly, the expected citations from the project

initiated at time tnj , denoted by Vj,tj , are

Vj,tj = E

[∫ τ lj

tlj

(τnj − tnj )rlt dt
∣∣∣Fc

tj

]
= E

[∫ ∞

tnj

e−λt(t− tnj )rlt dt
∣∣∣Fc

tj

]
, (2)

where Fc
t is the filtration capturing the common knowledge available at time t. The second equality

follows from the memoryless property of Poisson counting processes. Since at most one topic can
be active in a field at any given time, we omit the topic index j from the researcher count rlt.

2.2 Researchers

A researcher aims to complete projects over the course of her career and to earn citations. Each
researcher is born at some time t with type n ∈ {1, . . . , N}. Since only one researcher of each
type exists at any time, we refer to her simply as researcher n. She retires at a random time T n

i ,
determined by a Poisson shock process dQnt with compensator ηdt, and is immediately replaced
by a new researcher of the same type.

At each instant, a researcher chooses which topic to work on, selecting only one topic at a time. Let
rnlt ∈ {0, 1} indicate whether the researcher is working in field l at time t. If she instead chooses to
search for a new topic, such a topic may arrive according to the Poisson process described above.
Let enlt ∈ {0, 1} indicate whether the researcher is exploring field l for a new topic at time t. A
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researcher incurs a cost κ > 0 in certainty equivalent utility each instant she spends working on
an active topic or exploring for a new one. The cost is the same in both cases, but a researcher
searching for a new topic also bears the additional risk that the topic never arrives, and the payoff
remains zero.

We assume that researcher n is risk-averse and has career concerns tied to his citation count, Cnt,
and prestige or esteem, βnt, which reflects promotions, awards, and broader recognition. Her
compensation has two components: (1) a time-varying wage cnt, which will later be linked to
current output, and (2) a path-dependent high-powered incentive component, ϕX(log βnt + Cnt),
accumulated over his career. At each instant, the researcher also incurs an effort cost of κ

∑L
l=1(r

n
lt+

enlt) to engage in either active research or topic discovery. Let rn
t = [rn1t, . . . , r

n
Lt] be the vector of

binary efforts the researcher devotes to active topics, and let en
t = [en1t, . . . , e

n
Lt] represent efforts

toward discovering new topics, subject to the current availability of topics. Let ιL denote the L× 1

vector of ones. Following Holmstrom (1989), we assume the researcher has Constant Absolute
Risk Aversion (CARA) flow preferences over compensation and effort:

u (cnt, βnt, Cnt, r
n, en) = −β−γϕX

nt e−γ(cnt+ϕXCnt)+κ(rn+en)′ιL , (3)

where γ is the coefficient of absolute risk aversion over total compensation. The researcher has a
subjective discount rate ρ > 0, and we assume ρ+ η > λN , meaning that discounting exceeds the
maximum arrival rate of jump events.

If researcher n works on topic j in field l, then her citation count evolves according to the law of
motion

dCnt =
∑
l

rltr
n
lt dt− Cnt− dQnt, (4)

which reflects that researchers cite one another when working within the same topic. As a result,
researchers prefer to work in fields that are already populated by others. If the topic matures and
is significant (i.e., πlj = 1), the researcher receives accolades such as promotions or awards. Her
prestige βnt evolves according to:

dβnt = βnt−
∑
l

πljr
n
lt− dBl

t + (1− βnt−) dQnt, (5)

as an additional benefit. The citation count is initialized at zero and prestige begins at one when
the researcher starts her career. We summarize the researcher’s cumulative status as Xnt =
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log βnt + Cnt, which evolves as:

dXnt =
∑
l

rltr
n
lt dt+

∑
n′

πljr
n
lt− dBl

t −Xnt− dQnt, (6)

with initial condition Xn0 = 0. Researcher n’s preferences over compensation are then expressed
as −e−γcnt−γϕXXnt . Note that career rewards are not modeled as a fixed supply. For instance, if all
researchers were to initiate new topics without contributing to active ones, the total pool of rewards
would shrink, as citations would become scarce.

Finally, we assume that each researcher has an outside option upon entering the profession at time
T n
i−1. This alternative career requires no effort and, for simplicity and stationarity, provides a

constant flow of consumption cnTn
i−1

. The outside option delivers an expected value U0
Tn
i−1

given by

U0
Tn
i−1

= −E

[∫ Tn
i

Tn
i−1

e−ρ(t−Tn
i−1)e

−γcnTn
i−1 dt

∣∣∣FTn
i−1

]
= −e

−γcnTn
i−1

ρ+ η
. (7)

As a result, researcher n faces a participation constraint (PC):

UnTn
i−1

≥ U0
Tn
i−1

(8)

Since a researcher can be born at any instant, and the participation constraint is most binding when
no active topic is available, we must verify that the constraint is satisfied in the absence of an active
topic.

A researcher i of type n, born at time T n
i−1 (with T n

0 = 0), solves the following optimization
problem:

UnTn
i−1

= sup
rn,en, (rn

t +ent )
′ιL≤1∀t

E

[∫ Tn
i

Tn
i−1

e−ρ(t−Tn
i−1)

(
−e−γcnt−γϕXXnt+κ(rn

t +ent )
′ιL
)
dt
∣∣∣FTn

i−1

]

= sup
rn,en, (rn

t +ent )
′ιL≤1∀t

E

[∫ ∞

Tn
i−1

e−(ρ+η)(t−Tn
i−1)

(
−e−γcnt−γϕXXnt+κ(rn

t +ent )
′ιL
)
dt
∣∣∣FTn

i−1

]
, (9)

subject to the participation constraint (8), using the memoryless property of Poisson processes.
Each researcher fully internalizes how her own actions and those of others shape her career trajectory.
Researchers also understand how firms generate output and, therefore, internalize how their work
contributes to production. This may reflect private returns, such as royalties or institutional rewards,
or may be interpreted as a direct preference for producing socially valuable research. The latter
interpretation is particularly relevant when the value of research lies in public goods provision or
improved policy. The special case where ϕX = 0 corresponds to a researcher who cares only about
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her impact on economic output.

2.3 Growth

While citations and prestige represent the private returns to research, such efforts also promote
economic growth, which can benefit the broader economy. This connects our model to the endoge-
nous growth literature. Alternatively, one may interpret output as the profits of the firms where
researchers are employed. We capture this by letting aggregate productivity, At, evolve according
to the law of motion:2

dAt =
L∑
l=1

(2πlj − 1) dBl
t. (10)

This expression implies that aggregate productivity rises when a significant topic matures and falls
when an insignificant one does. The decline in productivity reflects that firms rely on research
to guide product development and strategic decisions. When a topic proves unimportant, prior
investments based on it are revealed to have been wasted. This can be interpreted as a correction
following speculative misallocation. Although there is already an opportunity cost to pursuing
failed research, allowing aggregate productivity to fall in such cases makes this cost explicit
without complicating the model. Since the key mechanisms remain unchanged, modeling this drop
adds realism without affecting the qualitative results.

The representative firm has an output given by: Yt = AtK, where capital K > 0 is fixed in the
economy. As discussed in Section 2.2, each researcher receives a share of total output as part
of their compensation, given by cnt = ϕAYt, where ϕA < 1

N
. We assume that the initial output

Y0 is large enough that the principal can offer high-powered career incentives without violating
feasibility. In particular, total compensation to researchers, given by NϕAYt+ϕX

∑N
n=1Xnt, must

not exceed Yt.

In what follows, we assume that the conditional probability that a topic is significant given a low
signal, p0, is sufficiently small. Specifically, we require p0 < 1

2
. By l’Hôpital’s rule, this implies

p0 <
1−e−γϕAK

1−e−2γϕAK for any ϕA > 0, since the function 1−e−x

1−e−2x is increasing in x. In contrast, we assume

that p1 ≥ 1−e−
γ
N

K

1−e−2
γ
N

K
.

2We could allow the productivity jump to depend on the number of researchers on a given topic, rlt. However, this
would bias researchers toward coordinating on the same topic and amplify the social cost of doing so when the topic is
insignificant. To avoid this, we assume the jump in productivity is independent of how many researchers are working
on the maturing topic.
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2.4 Relationship Among Drivers of Compensation

Prestige and economic output play similar roles in motivating researchers, as both increase only
when a significant topic matures. The key difference lies in how they relate to the value of a
research project. Economic output is directly tied to the magnitude of a project’s contribution,
whereas prestige can be substantial even when the economic value of the research is modest. While
this distinction is not central to the baseline analysis, the framework allows successful outcomes to
influence payoffs flexibly.

In the main analysis, we focus on citations. Unlike prestige or economic output, citations are not
necessarily associated with doing useful research, but they are observed continuously and serve
as a primary performance measure. We place risk aversion on the citation-based component of
pay to capture the asymmetry between a failed career and academic survival, as compared to the
difference between survival and academic stardom. This reflects an aversion to downside risk in
career outcomes.

2.5 Equilibrium Definition

We consider a Markov Perfect Equilibrium in which each researcher fully internalizes the impact
of her actions on her own career, the careers of others, and the aggregate economy. A strategy for a
researcher of type n is a sequence of project efforts {e⃗nt , r⃗nt }

Tn
i

t=Tn
i−1

that solves the dynamic program
in Equation 9. An equilibrium is a fixed point in which researchers’ conjectured project intensities
{êlt, r̂lt}l,t match actual intensities {elt, rlt}l,t—that is, all researchers have rational expectations
about the evolution of the game.

This setup defines a mean-field Nash Equilibrium, where the relevant “mean fields” are the number
of researchers in each field, {elt, rlt}l,t. A researcher’s problem is Markov in L + N + 1 state
variables: the L probabilities plt that each topic is significant, which also indicate whether a field
is currently active; the N researcher statuses Xnt; and aggregate productivity At. However, as we
will show, the optimal closed-loop policies depend on a reduced state space. This allows strategies
to be not only Markov, but also recursive. We initialize the economy at t = 0 with no active topics.

3 Equilibrium
In this section, we construct the equilibrium of the research game. Our central proposition concerns
the behavior of the N researchers. We apply the dynamic programming principle to characterize
each researcher’s optimal policy. Given CARA preferences and the linear evolution of status, the
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absolute level of a researcher’s status does not influence her decision. As a result, all researchers
follow identical policies in equilibrium. A researcher’s choice depends only on whether there is
an active topic and, if so, on the signal Slj it received about its significance. We refer to an active
topic with a high signal (Slj = 1) as promising, given its high likelihood of being significant. An
active topic with a low signal (Slj = 0) is referred to as speculative, due to its lower likelihood of
producing a valuable outcome. We then have the following key proposition:

Proposition 1. The optimal research policy for the N researchers has the following properties:

• If there is a promising active topic, then all researchers work on that topic until either it
matures or negative news arrives.

• If no promising topic is active and career concerns are sufficiently strong (i.e., ϕX ≥ ϕ∗
X),

then all researchers work on any available speculative topic until it matures.

• If no topic is active, then all researchers search for a new topic and are indifferent about
which field to search in.

• This is an equilibrium if the effort cost κ is sufficiently small. Specifically, if speculative
topics are researched, then κ ≤ min {κ∗

1, κ
pc
1 }. If speculative topics are not researched,

then κ ≤ min {κ∗
2, κ

pc
2 }, where κ∗

1, κ
pc
1 , κ∗

2, and κpc
2 are defined in equations (A.33), (A.36),

(A.32), and (A.38), respectively.

In contrast, in the absence of career concerns, researchers abandon speculative topics and instead
attempt to discover a new topic whenever no promising topic is active.

Proposition 1 shows that the equilibrium in our mean-field research game is surprisingly simple.
All researchers concentrate on any active promising topic that has received a high signal (Slj = 1),
continuing until it matures. These topics are most likely to be significant, which increases both
aggregate output and individual prestige. Coordinating on the same topic also maximizes citation
accumulation. As a result, there is at most one active high-signal topic at any point in time.

The more interesting case arises when a topic has received a low signal (Slj = 0), or when negative
news arrives about a topic that was initially promising. Without career concerns, researchers would
abandon such speculative topics and focus instead on discovering new, more promising ones. Since
the conditional probability that a speculative topic is significant, p0, is small, the socially optimal
action is to stop working on it and continue searching. In the presence of career concerns, however,
researchers may continue working on speculative topics through to maturity. This behavior is
career-enhancing for two reasons. First, speculative topics generate citations, while searching for
new topics does not. Second, speculative topics yield prestige if they succeed, but do not reduce
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status if they fail. As a result, researchers may continue to invest in topics that are no longer
believed to be valuable from a societal perspective. This leads to the emergence of academic
bubbles—topics that persist because they serve individual careers even when they no longer serve
scientific progress.

At the same time, rewarding citations and prestige helps relax the researcher’s participation con-
straint (8), since it improves expected career payoffs. This is especially important when effort costs
κ and risk aversion γ are high, or when the likelihood of discovering a significant topic (p0 and p1)
is low. Risk aversion over citations and prestige dampens the incentive to explore, similar to the
mechanism in Jones (1995), where private risk aversion exceeds social risk tolerance, discouraging
innovation. The lower the likelihood that research yields meaningful results, the harder it becomes
to sustain research effort. We summarize these insights in the following proposition:

Proposition 2. An increase in the reward for career advancement, ϕX , or in the probability that
topics are significant, p0 and p1, relaxes a researcher’s participation constraint. In contrast, higher
effort cost κ and higher risk aversion γ (for γ sufficiently large) tighten the constraint.

Our analysis has several important implications. First, citation counts in academic literature may
be difficult to interpret when they reflect career concerns. Researchers may prefer to work on topics
that are unlikely to be significant, simply because such topics generate citations more reliably than
riskier new ones. As a result, citations need not indicate social impact or, if economic growth
is the relevant outcome, long-term value. Moreover, career incentives may shape the behavior
of academic journals. Journals that internalize the citation motive may prefer to publish articles
from speculative fields, knowing these will attract attention regardless of the underlying social
value. This can shift editorial priorities away from research that is most promising from a societal
perspective.

Second, when career concerns are strong, researchers may allocate excessive effort to speculative
topics that eventually fade out, resulting in a clear form of misallocation. This behavior can distort
the direction of scientific progress and offers an alternative explanation for the observed decline in
research productivity (Bloom et al., 2020). However, our model also implies that disciplines with
more informative signals about topic quality—those with high p1 and low p0, such as the natural
sciences—are less vulnerable to this dynamic. In such fields, career incentives must be especially
strong to induce inefficient crowding in speculative areas.3

3We show in the Online Appendix that this result holds in a dynamic setting where signals arrive gradually. In that
case, there exists a threshold probability below which a topic is abandoned, and this threshold decreases as career
concerns intensify.
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Third, the model generates testable predictions about heterogeneity in researcher behavior. Re-
searchers with weaker career concerns should crowd less into popular topics, since they face less
pressure to accumulate citations.4 For example, we expect to observe a drop in crowding after
tenure, and among researchers who operate in environments where citations are not the primary
measure of success. Moreover, if we can measure the potential significance of a topic, we should
find that less career-driven researchers are overrepresented in high-potential but less popular areas.
However, because most researchers face strong career incentives, the correlation between objective
significance and publication output may be weak, or even undetectable. In the next section, we
show that research on the genetic determinants of disease offers such a setting, with measurable
topic significance and observable variation in career incentives across researchers.

Finally, our results raise a broader question about incentive design. If rewarding all contributions
to a topic with citations encourages coordination and possible crowding, might selective rewards,
such as prizes or awards for the most impactful work, foster more competition? If only the most
influential paper receives recognition, risk-averse researchers may be more likely to explore less
crowded topics or try to create new ones. This winner-take-all approach, as described by Dasgupta
and David (1994), may be more aligned with social goals when diversification is desired. In
contexts where society is risk-averse over innovation outcomes, prize-based incentives may be
preferable. When financial or institutional resources are limited, selective recognition can provide
an alternative to sustaining broad, citation-based incentives.

4 Career Concerns as a Contracting Outcome
In this section, we microfound the implicit academic contract that rewards citations and publications
as the solution to an underlying agency problem. We extend our model by assuming that effort is
not only costly for researchers, but also unobservable and non-contractible from the principal’s (i.e.,
society’s) perspective. This assumption is realistic: discovering new facts or ideas is inherently
difficult, and much of the research process is not visible in the resulting publication. Moreover, the
principal does not observe any signals about a topic until it matures. Because researchers contribute
indirectly to shared knowledge and rely on one another to advance topics, the research environment
resembles a moral hazard in teams problem from a social perspective (Holmstrom, 1982).
4The model can be extended to include researchers with different levels of career concern. The qualitative implications
remain similar, so we focus on the homogeneous case for clarity.
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We express the flow utility of researcher n as

u (wnt, e⃗
n
t , r⃗

n
t ) = −e−γwnt+κ(e⃗nt +r⃗nt )

′ιJ ,

where wnt denotes the researcher’s compensation paid by the social planner, the vectors r⃗nt and
e⃗nt represent the effort that researcher n allocates to active topics and to the search for new topics,
respectively, and the vector ιL is an L × 1 vector of ones. The researcher’s effort is subject to the
budget constraint (e⃗nt + r⃗nt )

′ιL ≤ 1.

The first-best outcome would have the planner allocate all output across researchers at each instant.
The maximum compensation the planner can provide to any researcher is wnt = 1

N
Ynt, and by

ex-ante symmetry, it will choose to give each researcher exactly this amount. In addition, the
planner would assign all m∗ active researchers to work exclusively on promising active topics. The
number of active researchers is limited by the flow certainty equivalent cost of effort, κ. This cost
enters through the conditions for Pareto optimality: each active researcher must prefer following
the planner’s assignment over deviating. As a result, only m∗ − 1 researchers may be incentivized
to remain active. We summarize these implications in the following proposition:

Proposition 3. In the first-best economy, which is Pareto efficient, it is socially optimal for there to
be m∗ ≤ N active researchers, and:

• if there is a promising active topic, all active researchers work on it until it matures;

• if no promising topic is active, all researchers search for a new topic and are indifferent
between searching in the same or different fields;

• the number of active researchers m∗ is the largest m ≤ N that satisfies condition (A.54). If
κ ≤ κ∗, where κ∗ is defined in equation (A.55), then all N researchers are active;

• this is an equilibrium if κ ≤ κpc, where κpc is given by equation (A.57).

Proposition 3 also highlights a key coordination failure that arises from a free-rider problem. A
researcher’s incentive to exert effort depends heavily on how many others are actively researching,
and these incentives are weaker when the number of active researchers is small. Since effort is
unobservable, researchers have an incentive to shirk, as the failure to discover a new topic or
to mature an existing one may be attributed to bad luck rather than insufficient effort. Under
asymmetric information, the first-best allocation may no longer be attainable, which motivates the
need for incentive-compatible contracts.
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In what follows, we assume κ = κ∗, as defined in Proposition 3, so that it is just optimal for all N
researchers to be active in the first-best economy. We now illustrate the central free-rider problem
that arises when effort is unobservable. If N is not too large, and all other researchers choose not
to exert effort, then the remaining researcher also finds it optimal to deviate. This is because the
benefits of research are shared, while the cost of effort is borne privately. Proposition 4 shows that,
under these conditions, zero active researchers can constitute a Nash Equilibrium.

Proposition 4. Suppose κ = κ∗. If N < Ñ , where Ñ satisfies Equation A.59 with equality, then
zero active researchers constitutes a Nash Equilibrium. This equilibrium is Pareto inferior to the
first-best allocation characterized in Proposition 3.

The possibility of coordination failure creates a role for the principal to offer an incentive-compatible
contract that supports a second-best outcome. Since effort is unobservable, contracts must be based
on observable measures such as output and citations. Because output is observable, the principal
can also determine when a research topic proves successful. Therefore, contracts can either reward
researchers continuously based on citation accumulation or only upon the successful maturation
of a significant topic. The latter approach requires saving output to fund delayed rewards, which
exposes researchers to considerable risk, or violating budget balance by paying more than current
production allows. These constraints limit the feasibility of high-powered incentives and may
induce distortions that prevent the first-best from being achieved.

This friction opens the possibility that a contract generating academic bubbles may be second-best,
even if it diverts researchers from more socially valuable lines of inquiry. The standard trade-off
in contract theory applies here: paying researchers only when output rises offers strong incentives
to pursue promising topics but requires large transfers to risk-averse agents. When researchers
are highly risk-averse and effort is costly, and when output changes are infrequent or difficult to
verify, contracts that reward citations—and thus create career concerns—can be optimal despite
their inefficiencies.

We conclude this section by characterizing the optimal contract, that is, the choice of ϕA and ϕX ,
that a principal (society) would offer. We assume the principal is risk-neutral and can commit at time
0 to a compensation scheme that maximizes the expected present value of output net of payments
to researchers. The principal has a subjective discount rate ρ and chooses contract loadings subject
to the researchers’ participation and incentive compatibility constraints. Formally, the principal
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solves:

UP = sup
ϕA,ϕX

E

[∫ ∞

0

e−ρt

(
Yt −

N∑
n=1

ϕnt

)
dt

]
, (11)

subject to: researcher problem in Equation (9).

At time 0, we assume that no researcher has accumulated status and that no research topic is active.

Proposition 5 characterizes the key features of the optimal contract. In addition to the participation
constraint binding, the principal chooses the contract loadings to balance the marginal cost of higher
compensation with the marginal benefit of relaxing researchers’ participation constraints.

Proposition 5. The principal chooses the research contract loadings such that:

• If the researcher’s effort cost κ is sufficiently small, the principal sets ϕA and ϕX to satisfy
equations 8 and A.65, and researchers work only on promising topics.

• If κ is sufficiently large, the principal sets ϕA and ϕX to satisfy equations 8 and A.66, and
researchers work on any active topic.

• If there is a risk of coordination failure, the principal must choose ϕX ≥ ϕ
X

to eliminate this
equilibrium. If κ is high, then ϕ

X
must be set to ensure that researchers work on any active

topic.

Proposition 5 highlights that the optimal research contract depends on the cost of effort. When
effort is relatively cheap, the principal can implement a socially efficient outcome by keeping ϕX

low enough to discourage work on speculative topics. However, when effort is costly, the principal
must reward all research to maintain participation. To prevent coordination failures, the planner
may need to set the loading on status ϕX high enough to make even speculative research individually
optimal.

5 Empirical Analysis
5.1 Research on the Genetic Roots of Human Diseases

In this section, we provide an empirical analysis to test the key implications of our model. This
requires identifying a setting in which the set of potential research topics is observable ex ante,
which makes it possible to assess whether researchers are crowding into a narrow subset of topics.
Biomedical research on the relationship between genetic mutations and human diseases satisfies
this condition. The space of possible topics, namely the set of human protein-coding genes, is large
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but well defined, with over 19,000 candidate genes available for study. Moreover, the social value
of successful research in this area is well established. Genes that harbor disease-causing mutations
often serve as effective drug targets, increasing the likelihood of developing successful therapies
(Nelson et al., 2015).

This setting aligns closely with our theoretical framework for several reasons. First, scientists face a
clear choice between continuing to investigate well-studied genetic targets or exploring novel ones.
Some regions of the genetic landscape are densely studied, raising the risk of inefficient crowding
on a narrow set of topics (Edwards et al., 2011; Gates et al., 2021). Although incentives to establish
priority in new areas exist (Hill and Stein, 2025a), researchers continue to focus on a relatively small
subset of human genes. This is puzzling given widespread recognition that promising drug targets
may lie among less-studied genes (Stoeger et al., 2018). Second, this context offers quantifiable
ex ante measures of a gene’s importance. Genes with mutations associated with disease are more
likely to play a role in human pathology (Haynes et al., 2018; Richardson et al., 2024). This feature
allows us to test whether researchers cluster in crowded areas because those genes are truly more
ex ante promising, or whether they coordinate on less promising ones, reflecting misallocation and
the potential emergence of academic bubbles.

Our model implies several empirical regularities about how researchers select topics in this setting.
First, if crowding confers a citation advantage, we should observe that the number of citations a
paper receives depends not only on the scientific importance of the gene it studies but also on how
many other papers are being written about that gene. Second, we should see a causal relationship:
exogenous increases in the number of papers on a gene should lead to more citations for work on
that gene. More broadly, we expect a misalignment between the ex ante promise of a gene—such
as its predicted relevance to disease—and the volume of research it attracts. Finally, the model
predicts cross-sectional differences tied to career incentives. Researchers under stronger career
pressures should be more likely to cluster in crowded areas, while those less constrained should
explore less-studied genes. We measure variation in these incentives by comparing researchers at
different career stages (tenured versus untenured), facing different career incentives (universities
versus NIH’s Intramural Research Program), or working in institutions where research output
carries different weight in career advancement (more or less research-oriented universities).
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5.2 Data

To test these ideas, we assembled a dataset of all papers focusing on human protein coding genes.
Publications on protein-coding genes are identified using NIH’s PubTator3 (Wei et al., 2024), which
applies natural language processing to extract gene mentions from all articles indexed by PubMed.
For ease of analysis and interpretation, we focus in our main analysis on publications studying
only one gene (but results are all robust to examining multiple genes, see Appendix Table D2).
This leaves us with 857,025 papers published between 1980 and 2018. Citation data come from
NIH’s iCite database,5 which also tracks citations from clinical studies. The count of citations from
USPTO patents is drawn from the data compiled by Marx and Fuegi (2020). Information on the
principal investigator (PI), generally listed last in the authorship order, is obtained from Author-ity
2018 (Torvik and Smalheiser, 2021), which provides high-quality author disambiguation for all
PubMed articles. Finally, institutional affiliations for each publication are drawn from OpenAlex
(Priem et al., 2022).

To measure the ex ante scientific importance of a gene, we follow prior biomedical literature
(Haynes et al., 2018) and use the number of distinct diseases with which it has been associated
in genome-wide association studies (GWAS). GWAS are large-scale, atheoretical case–control
studies that compare the DNA of individuals with and without a given condition to identify
mutations statistically correlated with the disease (Tranchero, 2025). By design, GWAS do not
restrict attention to a predefined set of genes, ensuring that results are not biased by the historical
allocation of research effort (Visscher et al., 2012). Genes harboring mutations linked to many
conditions are more likely to play central roles in human pathology and therefore represent more
promising research targets (Haynes et al., 2018; Stoeger et al., 2018). We obtain these data from
the University of New Mexico’s Target Illumination GWAS Analytics (TIGA) platform (Yang et al.,
2021), which aggregates evidence across studies to generate counts of gene–disease associations.6

This measure serves as our baseline proxy for scientific importance and is independent of historical
publication patterns. In Appendix C, we replicate all results using an alternative proxy based on
molecular data capturing the probability that a gene is expressed in the presence of a disease.

Table 1 reports descriptive statistics. Papers in our sample receive, on average, 2.85 academic
citations per year, though the distribution is highly skewed, with a right tail extending to more than
700 citations annually. The average publication studies a gene in the top eight percent of the most
5https://icite.od.nih.gov/analysis
6Data are publicly available at the following website: https://unmtid-shinyapps.net/shiny/tiga/.
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studied ones. Roughly 44 percent of publications focus on understudied genes, defined as those
below the median in cumulative prior publications. Genes are linked to an average of 40 disease
traits in GWAS, but the distribution is wide, ranging from none to nearly one thousand. Most genes
have a mouse homolog, allowing them to be studied in laboratory mice. We will use whether a
gene has a mouse homolog as an exogenous source of variation in crowding by researchers into
genes in our instrumental variable approach. Senior PIs account for 90% of our sample, while NIH
intramural scientists authored only 1.5% of the publications. Finally, papers receive, on average,
0.09 clinical citations and 0.01 patent citations per year, highlighting the relative selectivity of
translational uptake compared to academic impact.

6 Results
6.1 Crowdedness and Citations in Genetic Research

We begin by documenting that crowdedness is a salient feature of research in the genetic space, as
captured in our data. We rank genes by the total number of publications over the sample period
and plot the number of publications by rank in Panel (a) of Figure 1. The distribution is strikingly
skewed, with a handful of genes attracting the vast majority of research while most receive little or
none. Is this concentration efficient, with effort directed toward the most scientifically promising
genes? To assess this, we examine how many conditions have been associated with each gene in
GWAS studies. Panel (b) plots the same ranking against the logarithm of the number of diseases
related to each gene. Although publication counts and GWAS associations are positively correlated
(Appendix Figure D1), many promising genes are entirely neglected, while others with limited
therapeutic potential continue to draw substantial attention. This misalignment echoes prior work
showing that numerous scientifically important genes remain overlooked (Haynes et al., 2018;
Stoeger et al., 2018; Richardson et al., 2024).

Overall, we find a substantial discrepancy between the volume of publications on a gene and its
scientific importance. This suggests a potential misalignment between the citations a paper receives
and the underlying scientific value of its contribution. To examine this possibility, we estimate
whether papers on under-explored genes receive fewer citations even controlling for the number of
diseases related to them. Our main specification is:

yi,t = α + β · crowdednessi + θ · importancei + µj,t + dc + ap + εi,t, (12)

where the dependent variable yi,t is the number of citations received per year by paper i. The key
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independent variable is crowdednessi, defined as the percentile of the cumulative publication count
for the focal gene, capturing how extensively it has been studied. importancei is our time-invariant
proxy for the scientific importance of gene i. The specification includes journal-by-year fixed
effects (µj,t), MeSH disease-class fixed effects (dc), and PI fixed effects (ap). In the most stringent
version, papers are compared within the same author, disease class, and journal-by-year cell.

Table 2 presents the results. We invert the gene rank so that higher values correspond to less
studied genes and find a statistically significant decline in citation impact for publications on
these genes. In the most stringent specification with PI fixed effects, studying the least studied
gene (top percentile) rather than the most studied gene (bottom percentile) is associated with 0.9
fewer citations per year, relative to a mean of 2.85. Strikingly, this effect persists even after
controlling for scientific importance, consistent with our key theoretical prediction. Although
scientific importance is directionally associated with higher citations, the coefficient is imprecisely
estimated. In Panel B, we re-estimate the specification using a dummy indicating whether the gene
had received a below-median number of publications at the time of publication and find similar
results: papers on below-median genes receive 0.154 fewer citations per year. Figure 2 visualizes
these patterns by plotting yearly citations against the number of disease associations for each gene.
While the relationship between scientific importance and citations is weakly positive, there is a
sharp discontinuity favoring crowded genes at every level of importance, revealing a consistent
citation penalty for studying understudied genes.

Although the baseline specification includes tight controls, we also address the risk of unobservable
confounders with an instrumental variable strategy. The approach exploits variation in genetic
similarity between humans and mice. Studying a human gene is easier and less costly when
scientists can investigate its counterpart in laboratory mice. This is possible when the two species
share a homolog gene, defined as a gene inherited from a common ancestor that performs equivalent
functions in both species. About 10 percent of human protein-coding genes lack such a counterpart
for evolutionary reasons. These genes have historically been neglected for reasons of convenience
rather than importance (Stoeger et al., 2018; Richardson et al., 2024), making the absence of a
mouse homolog a plausibly exogenous source of variation in crowdedness. Table 3 reports the
results. As expected, genes with a mouse homolog are studied more frequently, with a strong
first-stage F-statistic. Even in our most stringent specification with PI fixed effects, we continue
to find evidence of a significant citation penalty. The instrumented estimates confirm a robust
citation penalty, showing that the effect is driven by crowdedness itself rather than by unobserved
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characteristics of the gene.7

6.2 Heterogeneity in Researchers’ Career Incentives

While the aggregate results suggest that scientists may concentrate on crowded genetic topics to
avoid a citation penalty, this alone does not establish that the penalty drives their choices. Scientists
might instead be intrinsically motivated to study important genes regardless of their impact on their
citation counts. To disentangle these explanations, we conduct a series of descriptive heterogeneity
analyses that test whether researchers facing stronger career pressures, or greater incentives to
maximize citation impact, are less likely to work on uncrowded genes. These analyses provide a
suggestive way to explore whether the citation penalty is the mechanism underlying our results.

A first source of heterogeneity is whether the principal investigator (PI) is likely tenured. Tenure
reduces career risk by providing long-term job security, which in turn lowers researchers’ sensitivity
to short-term citation incentives and allows them to pursue less common directions (Manso, 2011;
Tripodi et al., 2025). We proxy for tenure by coding PIs as senior if they have been publishing for
at least seven years, but results are similar using different cut-offs (Appendix Table D1). Consistent
with this mechanism, Panel A of Table 4 shows that senior researchers are systematically more likely
to publish on less studied genes, both by moving up the inverse percentile ranking of crowdedness
(columns 1 and 2) and by focusing more often on genes with a below-median number of publications
(columns 3 and 4). This relationship is visualized in the first panel of Figure 3, which plots the
likelihood that a paper is authored by a senior PI against the crowdedness of the focal gene. Taken
together, these results suggest that by alleviating career pressures, tenure reduces sensitivity to
citation penalties and encourages researchers to explore less studied genes.

The second source of heterogeneity we examine is whether the paper’s PI is affiliated with the NIH
Intramural Research Program. Unlike academic researchers, intramural scientists are employed
and funded directly by the NIH (Azoulay et al., 2013). In terms of our model, they are directly
monitored by the NIH and do not face the up-or-out pressures of academia, which often push
researchers toward short-term publication impact. Consistent with this prediction, we find that
NIH-affiliated PIs are significantly more likely to publish on less-studied genes (Panel B of Table
4). The second panel of Figure 3 shows the positive relation between the likelihood of a paper
7This result is consistent with earlier evidence by Pfeiffer and Hoffmann (2007), who showed that genes studied more
frequently are more likely to appear in higher–impact journals. Our analysis extends this result by demonstrating
that the effect persists even after accounting for journal and author fixed effects, and further by using an instrumental
variable strategy that isolates exogenous variation in how much a gene has been studied. Together, these results
strengthen the case of a citation advantage derived from working on crowded topics.
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having an NIH-affiliated author and the featuring of less studied genes. These findings complement
prior evidence that intramural researchers generate more novel scientific output (Xu et al., 2025)
and suggest that scientists not facing the incentives of academic careers are more willing to explore
less studied parts of the genetic landscape.

Finally, we examine the role of university prestige. Researchers at top institutions are often
embedded in larger laboratories that depend on a steady flow of publications and grants to sustain
personnel (Zhang et al., 2022). Such labs tend to favor established lines of work over disruptive
exploration, since their scale creates stronger incentives to avoid failure (Wu et al., 2019). In
addition, novel contributions are more likely to appear in lower-impact journals, making them less
attractive under tenure systems in elite departments (Wang et al., 2017). To test whether these
dynamics shape topic selection, we restrict our sample to papers with U.S.-based PIs and compare
those affiliated with top 10 universities to others. The results, shown in Panel C of Table 4, provide
some evidence that researchers outside the most highly ranked departments are more likely to study
less common genes. Although the within-author variation across rankings is limited, the binscatter
in Figure 3 shows a suggestive association.

Taken together, the heterogeneity analyses suggest that career pressures play a central role in driving
researchers toward crowded genes. PIs who are tenured or employed within the NIH intramural
program, and thus less exposed to citation-based incentives, are significantly more likely to publish
on less-studied genes. By contrast, researchers at elite universities, where career and resource
pressures are most intense, show a tendency to remain in crowded areas. The consistent pattern
across these comparisons attunes with the model’s predictions that citation concerns discourage
exploration, and help explain why attention clusters on genes that are already heavily studied rather
than those that are more likely to be scientifically important.

6.3 Impacts on Downstream Innovation

We next examine how the allocation of scientific attention shapes downstream developments in
medicine. We focus on two paper-level outcomes that capture potential real-world impact rather
than academic recognition. The first is the number of citations a paper receives from clinical
studies, a crucial step in translating discoveries into therapeutic applications. Clinical research
might be expected to draw most heavily on papers studying the most scientifically significant
genes. In practice, because it builds on the broader scientific literature, it may inherit its biases,
particularly the tendency to concentrate on already crowded genes. To test which force dominates,
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we re-estimate our main specification using clinical citations as the dependent variable. The results,
reported in the first panel of Table 5, mirror those for academic citations: papers on less-studied
genes consistently receive fewer clinical citations, even after controlling for the number of diseases
associated with the gene. This indicates that the misallocation of attention in basic science carries
through to the translational stage, with direct consequences for medical progress. Appendix Figure
D2 illustrates this result, again showing that clinical research disproportionately rewards work on
already crowded genes.

The second outcome we consider is the number of citations a paper receives from firm patents.
Unlike academic citations, patent citations may be less sensitive to how concentrated prior research
is, since corporate inventors are motivated by the most commercially promising applications for
drug development. Accordingly, we estimate our main specification using citations from USPTO
patents as the dependent variable. The results, reported in the bottom panel of Table 5, show that
patent citations are indeed less influenced by whether a gene is heavily studied. Using the percentile
rank, papers on less-studied genes attract more patent citations, while the below-median indicator
yields less precise estimates. Figure D2 visualizes these findings, again showing no systematic bias
of patent citations toward crowded genetic areas. Taken together, the evidence suggests that firms
searching for commercially valuable innovations draw more heavily on research in less-studied
genes, highlighting how academic incentives can steer attention away from precisely those targets
with the greatest potential for industrial application.

6.4 Robustness Checks

A. Alternative Proxy of Genes’ Scientific Importance: In Appendix C, we replicate all main
analyses using an alternative measure of scientific importance based on the probability that a
gene is differentially expressed in human disease. This proxy captures the likelihood that a
gene is “switched on” in disease contexts, providing molecular evidence complementary to our
baseline GWAS-based measure. The data are obtained from Northwestern University’s Find My
Understudied Genes database (Richardson et al., 2024). Results are robust and papers focusing on
less-studied genes continue to experience a significant citation penalty, even after controlling for
differential expression.

B. Including Publications Studying Multiple Genes: Appendix Table D2 extends the analysis
to include publications that study multiple genes simultaneously. For these papers, we follow the
standard assumption that researchers allocate their attention equally across all genes mentioned and
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compute the average measure of scientific importance and crowdedness across them. The main
findings are unaffected by this adjustment, confirming that the citation penalty for less-studied
genes is not driven by our focus on monogenic publications.

7 Conclusion
In this paper, we model the process of academic inquiry and show that rewarding publications and
citations can lead to excessive coordination among researchers and, in some cases, the formation of
academic bubbles. Empirical evidence from genetics research supports both that concentrating on
well-studied areas increases citations and that stronger career incentives predict greater crowding
into these areas. Both patterns are consistent with the mechanisms identified in our model. Our
normative analysis suggests that such incentives may still be necessary to motivate researchers,
particularly when they are risk-averse, effort is costly, and the likelihood of discovering a promising
topic is low.

More broadly, our findings underscore the importance of considering researcher incentives when
evaluating the quality and impact of scientific work. From a principal-agent perspective, the decline
in breakthrough ideas documented by Bloom et al. (2020) and Park et al. (2023) may reflect distorted
incentives rather than diminishing scientific returns. If research stagnation stems from the structure
of incentives rather than the limits of human creativity, then rethinking how we evaluate and reward
researchers may help revitalize scientific progress.
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8 Figures and Tables

Figure 1: Research is Concentrated on Few Genes, While Many Disease-Relevant Genes Remain
Neglected.

(a) Count of Scientific Publications on Each Gene

(b) Count of Diseases Associated with Each Gene

Note: The figure compares the distribution of scientific effort across human genes with the number of diseases
associated with mutations in those same genes. Panel (a) shows the count of publications targeting each gene on the Y
axis, with genes on the X axis sorted from the most to the least studied. Panel (b) shows the count of human diseases
associated with each gene on the Y axis, with genes on the X axis sorted from the most to the least studied. Both panels
present the genes sorted in the same way on the X axis to allow a comparison. The sample is the full analysis sample
as defined in the text. See text for details.
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Table 1: Descriptive Statistics.

mean median st d min max N

Citations per Year 2.853 1.364 6.939 0.000 750.400 857,025
Inverse Study Rank 7.454 2.000 14.413 0.000 99.000 857,025
Understudied (0/1) 0.439 0.000 0.496 0.000 1.000 857,025
Gene-Trait Associations 40.333 23.000 67.141 0.000 971.000 857,025
Has Mouse Ortholog (0/1) 0.917 1.000 0.276 0.000 1.000 857,025
Senior Author (0/1) 0.899 1.000 0.302 0.000 1.000 851,796
NIH Author (0/1) 0.015 0.000 0.121 0.000 1.000 857,025
Outside Top 10 University (0/1) 0.732 1.000 0.443 0.000 1.000 136,529
Clinical Citations per Year 0.091 0.000 0.431 0.000 107.800 857,023
Patent Citations per Year 0.001 0.000 0.016 0.000 3.500 857,025

Note: This table reports summary statistics at the paper level for 857,025 publications focusing on one
human protein-coding genes between 1980 and 2018. Citations per Year: annual forward citations
received from other academic articles (source: NIH iCite). Inverse Study Rank: percentile rank
(inverted) of cumulative publication counts on the focal gene, where higher values indicate less studied
genes. Understudied (0/1): indicator equal to one if the focal gene had below-median cumulative
publications at the time of publication. Gene–Trait Associations: number of diseases associated with
the focal gene in data-driven genome-wide association studies (GWAS), drawn from TIGA (Yang et al.,
2021). Has Mouse Ortholog (0/1): indicator equal to one if the human gene has a homolog in laboratory
mice, used in the instrumental variable analysis. Senior Author (0/1): indicator equal to one if the last
author (PI) has at least seven years of publishing history. NIH Author (0/1): indicator equal to one if the
PI is affiliated with the NIH Intramural Research Program. Outside Top 10 University (0/1): indicator
equal to one if the PI is not affiliated with a top 10 U.S. biomedical department, based on the 2006
CWTS Leiden Rankings. Clinical Citations per Year: annual forward citations received from clinical
trial publications (source: NIH iCite). Patent Citations per Year: annual forward citations received
from USPTO patents (source: Marx and Fuegi (2020)). See text for details.
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Figure 2: Publications in Crowded Genetic Fields Receive More Citations, Irrespective of the
Disease Importance of the Gene.

Note: This figure plots the relationship between yearly citations received by a publication and the
biological importance of the gene it studies. The importance of a gene is proxied by the number of
diseases associated with it in unbiased GWAS studies. The plot is presented as a binned scatterplot,
separately for genes below and above the median of publications received. For both groups of genes, we
residualize yearly citations and biological importance with respect to an indicator for each journal-year
bin. We divide the sample into 20 equal-sized groups based on the ventiles of the biological importance
measure and plot the mean of yearly cites against the mean of importance in each bin. The sample is
the full analysis sample as defined in the text. See text for details.
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Figure 3: Researchers With Plausibly Fewer Career Pressures Explore Less Studied Genes.

(a) Senior Authors and Exploration of Less Studied Genes

(b) NIH Intramural Authors and Exploration of Less Studied Genes

(c) Authors in Less Prestigious Universities and Exploration of Less Studied Genes

Note: This figure shows the likelihood that a publication features a senior author (panel (a)), an NIH intramural
researcher (panel (b)), or a researcher affiliated with a less prestigious university (panel (c)), as a function of how much
prior research has been conducted on the gene studied. The x-axis divides genes into 20 equal-sized bins based on their
rank in the distribution of prior publications, from the most to the least studied. The plotted values are residualized
with respect to journal-year fixed effects. The sample is the full analysis sample as defined in the text. See text for
details.
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Table 2: Citation Penalty to Papers Focusing on Less Studied Genes.

Panel A: Percentile Rank

(1) Citations (2) Citations (3) Citations (4) Citations
Inverse Study Rank -0.0127∗∗∗ -0.0122∗∗∗ -0.00927∗∗∗ -0.00924∗∗∗

(0.000503) (0.000537) (0.000867) (0.000866)
Scientific Importance 0.0000847

(0.000175)

Journal-Year FE Yes Yes Yes Yes
Disease Class FE No Yes Yes Yes
Principal Investigator FE No No Yes Yes
N 832,994 790,650 604,906 604,906

Panel B: Dummy Version

(1) Citations (2) Citations (3) Citations (4) Citations
Understudied (0/1) -0.297∗∗∗ -0.260∗∗∗ -0.156∗∗∗ -0.154∗∗∗

(0.0152) (0.0161) (0.0257) (0.0257)
Scientific Importance 0.000132

(0.000175)

Journal-Year FE Yes Yes Yes Yes
Disease Class FE No Yes Yes Yes
Principal Investigator FE No No Yes Yes
N 832,994 790,650 604,906 604,906

Note: †, *, **,*** denote significance at the 10%, 5%, 1%, and 0.1% level, respectively. Cross-sectional
OLS regressions at the publication level. Robust std. err. in parentheses. Citations: average yearly
scientific citations received by the publication; Inverse Study Rank: percentile rank of the gene studied
by amount of prior research, reversed so that 100 = least studied and 0 = most studied; Understudied: 0/1
= 1 for protein-coding human genes with a below-median number of publications; Scientific Importance:
count of diseases linked to mutations in the gene, as identified by unbiased genome-wide association
studies (GWAS); Journal-Year FE: fixed effect for articles published in a scientific journal in a given
year; Disease Class FE: fixed effect for disease codes from the MeSH tree; Principal Investigator FE:
fixed effect for the last author of the article, usually denoting the PI of the project. See text for details.
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Table 3: Citation Penalty to Papers Focusing on Less Studied Genes Using an Instrumental-Variable
Approach.

Panel A: Percentile Rank

(1) Inverse Study Rank (2) Citations (3) Inverse Study Rank (4) Citations
Mouse Homolog (0/1) -0.356∗∗∗ -0.361∗∗∗

(0.0634) (0.0925)

Inverse Study Rank -0.454∗∗∗ -0.254∗
(0.0994) (0.121)

F-Statistic (First Stage) 31.558 15.241

Scientific Importance Yes Yes Yes Yes
Journal-Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE No No Yes Yes
N 790,650 790,650 604,906 604,906

Panel B: Dummy Version

(1) Understudied (0/1) (2) Citations (3) Understudied (0/1) (4) Citations
Mouse Homolog (0/1) -0.0185∗∗∗ -0.0150∗∗∗

(0.00214) (0.00301)

Understudied (0/1) -8.73∗∗∗ -6.11∗

(1.50) (2.76)

F-Statistic (First Stage) 75.202 24.972

Scientific Importance Yes Yes Yes Yes
Journal-Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE No No Yes Yes
N 790,650 790,650 604,906 604,906

Note: †, *, **,*** denote significance at the 10%, 5%, 1%, and 0.1% level, respectively. Cross-sectional
OLS regressions at the publication level. Robust std. err. in parentheses. Citations: average yearly
scientific citations received by the publication; Inverse Study Rank: percentile rank of the gene studied
by amount of prior research, reversed so that 100 = least studied and 0 = most studied; Understudied:
0/1 = 1 for protein-coding human genes with a below-median number of publications; Mouse Homolog
(0/1): 0/1 = 1 for protein-coding genes with a homolog gene in the mouse, which allows them to be
studied using the laboratory mouse; Scientific Importance: count of diseases linked to mutations in
the gene, as identified by unbiased genome-wide association studies (GWAS); Journal-Year FE: fixed
effect for articles published in a scientific journal in a given year; Disease Class FE: fixed effect for
disease codes from the MeSH tree; Principal Investigator FE: fixed effect for the last author of the
article, usually denoting the PI of the project. Both panels report the Kleibergen-Paap F statistic for the
first-stage regression. See text for details.
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Table 4: Researcher Characteristics and Exploration of Less Studied Genes.

Panel A: Senior Researchers
(1) Inverse Study Rank (2) Inverse Study Rank (3) Understudied (0/1) (4) Understudied (0/1)

Senior Author (0/1) 0.267∗∗∗ 0.331∗ 0.0128∗∗∗ 0.00877†

(0.0536) (0.166) (0.00194) (0.00520)

Scientific Importance Yes Yes Yes Yes
Journal-Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE No Yes No Yes
N 785,891 604,906 785,891 604,906

Panel B: NIH Intramural Researchers
(1) Inverse Study Rank (2) Inverse Study Rank (3) Understudied (0/1) (4) Understudied (0/1)

NIH Intramural Author (0/1) 0.582∗∗∗ 0.500∗ 0.0345∗∗∗ 0.0214∗∗

(0.164) (0.252) (0.00455) (0.00663)

Scientific Importance Yes Yes Yes Yes
Journal-Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE No Yes No Yes
N 790,650 604,906 790,650 604,906

Panel C: Researchers in Lower-Ranked Institutions
(1) Inverse Study Rank (2) Inverse Study Rank (3) Understudied (0/1) (4) Understudied (0/1)

Author Outside Top 10 Dept (0/1) 0.251∗ -0.0276 0.00757∗ 0.00773
(0.117) (0.375) (0.00355) (0.0107)

Scientific Importance Yes Yes Yes Yes
Journal-Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE No Yes No Yes
N 111,566 80,520 111,566 80,520

Note: †, *, **,*** denote significance at the 10%, 5%, 1%, and 0.1% level, respectively. Cross-sectional
OLS regressions at the publication level. Robust std. err. in parentheses. Inverse Study Rank: percentile
rank of the gene studied by amount of prior research, reversed so that 100 = least studied and 0 =
most studied; Understudied: 0/1 = 1 for protein-coding human genes with a below-median number of
publications; Senior Author: 0/1 = 1 if the last author of the publication has been active in publishing
for at least 7 years (and thus is likely tenured); NIH Intramural Author: 0/1 = 1 if the last author of
the publication is affiliated exclusively with the NIH; Outside Top 10 Dept: 0/1 = 1 if the last author
of the publication is affiliated with a U.S. university whose biomedical departments are outside the top
10 in the 2006 CWTS Leiden rankings; Scientific Importance: count of diseases linked to mutations in
the gene, as identified by unbiased genome-wide association studies (GWAS); Journal-Year FE: fixed
effect for articles published in a scientific journal in a given year; Disease Class FE: fixed effect for
disease codes from the MeSH tree; Principal Investigator FE: fixed effect for the last author of the
article, usually denoting the PI of the project. Panel A has a smaller sample because it is restricted to
papers whose PI’s seniority could be established. Panel C has a smaller sample because it is restricted
to papers whose PI is affiliated with a U.S. university. See text for details.

36



Table 5: Clinical and Patent Citations to Papers Focusing on Less Studied Genes.

Panel A: Percentile Rank

(1) Clinical Cites (2) Clinical Cites (3) Patent Cites (4) Patent Cites
Inverse Study Rank -0.00111∗∗∗ -0.000713∗∗∗ 0.000007∗∗∗ 0.000006∗∗

(0.0000255) (0.0000344) (0.0000017) (0.0000021)

Scientific Importance Control Yes Yes Yes Yes
Journal-Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE No Yes No Yes
N 790,650 604,906 790,650 604,906

Panel B: Dummy Version

(1) Clinical Cites (2) Clinical Cites (3) Patent Cites (4) Patent Cites
Understudied (0/1) -0.0394∗∗∗ -0.0249∗∗∗ 0.000124∗∗ 0.0000915

(0.00100) (0.00145) (0.0000481) (0.0000603)

Scientific Importance Control Yes Yes Yes Yes
Journal-Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE No Yes No Yes
N 790,650 604,906 790,650 604,906

Note: †, *, **,*** denote significance at the 10%, 5%, 1%, and 0.1% level, respectively. Cross-sectional
OLS regressions at the publication level. Robust std. err. in parentheses. Clinical Cites: average yearly
citations from clinical studies received by the publication; Patent Cites: average yearly citations from
USPTO patents received by the publication; Inverse Study Rank: percentile rank of the gene studied by
amount of prior research, reversed so that 100 = least studied and 0 = most studied; Understudied: 0/1 =
1 for protein-coding human genes with a below-median number of publications; Scientific Importance:
count of diseases linked to mutations in the gene, as identified by unbiased genome-wide association
studies (GWAS); Journal-Year FE: fixed effect for articles published in a scientific journal in a given
year; Disease Class FE: fixed effect for disease codes from the MeSH tree; Principal Investigator FE:
fixed effect for the last author of the article, usually denoting the PI of the project. See text for details.
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A Appendix A: Proof of Propositions
Proof of Proposition 1:

In what follows, let At be the set of active fields at time t, and Et its complement (i.e., the set of
inactive fields), R−n,lt the number of researchers working in active topic l other than researcher n,
and X−nt the vector of statuses of other researchers. In addition, let ui be N × 1 Euclidean basis
vector that is all zeros except for the ith entry that is 1.

For simplicity, we first begin with the special case in which ξ = 0 and κ = 0, and no negative news
ever arrives after a topic has an initial high signal, Slj = 1. We then consider the more general case
in the sequel.

Step 1: Researcher n’s Hamilton-Jacobi-Bellman Equation

Recall that the state variable Xnt to be the status of researcher n with law of motion by Ito’s Lemma

dXnt =
∑
l

rltr
n
ltdt+ log

(
1 +

∑
l

πljr
n
lt−

)
dBl

t −Xnt−dQnt. (A.1)

A new researcher begins with a Xnt of X0 = 0 because they have an initial citation of 0 and prestige
of 1. In addition, we recognize her consumption is per capita output, i.e., cnt = ϕAAtK.

To condense notation, let pt = [p1t, ..., pLt]
′
to be the vector of pseudo-probabilities of significance

for each of the N fields (which also indexes which fields are active), and X−nt to be the vector of
other researchers’ statuses Xn′t. Let ∂yg denote the first partial derivative of the function g with
respect to y, respectively, and ∇zg the gradient of g with respect to the vector z. Further, let ui be
N × 1 Euclidean basis vector that is all zeros except for the ith entry that is 1.

The value function of the researcher VnTn
i−1

(t,Xnt,pt,X−nt, At) for a researcher n born at time
T n
i−1 then satisfies the Hamilton-Jacobi-Bellman (HJB) Equation according to the Dynamic Pro-
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gramming Principle

0 ≥ sup
rn,en,(rn

t +ent )
′ιL≤1 ∀ t

e−(ρ+η)t
(
−e−γϕAAtK−γϕXXnt+κ(rn

t +ent )
′ιL
)
dt+ E

[
dVnTn

i−1
(t,Xnt,pt,X−nt, At)

]
.

(A.2)
The HJB equation remains valid for random optional stopping times, and consequently is equipped
to handle researcher retirement.

Let us conjecture that researcher n’s value function takes the form

VnTn
i−1

(t,Xnt,pt,X−nt, At) = −e−(ρ+η)(t−Tn
i−1)−vaAt−vnXntfn (pt,X−nt) .

We can then expand this HJB Equation by Ito’s Lemma and factor out the e−(ρ+η)t−vaAt−vnXnt terms
to arrive at

0 ≥ sup
rn,en,(rn

t +ent )
′ιL≤1 ∀ t

{
− evaAt+vnXnt−γϕAAtK−γϕXXnt+κ(rn

t +ent )
′ιL + vnfn (pt,X−nt)

∑
l

(R−n,lt + rnlt) r
n
lt

− λ
∑
l∈At

(R−n,lt + rnlt)

((
plte

−va

(1 + rnlt)
vn + (1− plt) e

va

)
fn (pt − pltul,X−nt− +∆X−nt)− fn (pt,X−nt)

)
−
∑
l∈Et

λ (E−n,lt + enlt) (E [fn (pt + pljul,X−nt)]− fn (pt,X−nt)) + (ρ+ η) fn (pt,X−nt)

−
∑
i,l

[
∇X−nfn

]
i
(R−n,lt + rnlt) r

l
it −

∑
n′ ̸=n

η (fn (pt,X−nt −X−n′tun′)− fn (pt,X−nt))

}
,

(A.3)

where R−n,lt and E−n,lt are the number of researchers researching and investigating in each topic
without researcher n, respectively. The second term reflects the marginal impact of an increase
in citations on the researcher’s status. The third is the jump in the researcher’s value function
that accumulates when a topic matures. The fourth is the researcher’s value function when a new
topic is discovered. The fifth is the flow discounting in value from subjective discounting and the
instantaneous probability of the researcher’s retirement. The sixth term reflects the growth in the
status of other researchers and the last term reflects the stochastic their retirement. The inequality
becomes an equality under the optimal policy.

Matching coefficients on the At and Xnt terms, we find that

va = γϕAK,
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and
vn = γϕX ,

which confirms the conjecture.

Step 2: Optimal Research Policies

Suppose researcher n chooses in which topic to research only among active fields. We take the
convention that rlt +1 represents the number of researchers in topic l with researcher n, and rlt the
number without researcher n, and similarly with elt. Their optimal choice is then

vRnt = sup
l∈At

{
γϕXfn (rlt + 1)− λplte

−γϕAK
(
(rlt + 1) 2−γϕX − rlt

)
fn (pt − pltul,X−nt− +∆X−nt)

− λ
(
(1− plt) e

γϕAKfn (pt − pltul,X−nt− +∆X−nt)− fn (pt,X−nt)
)
−
∑
i

[
∇X−nfn

]
i
rilt

}
,

(A.4)

for fields in which plt ∈ (0, 1). The
∑

i,n′

[
∇X−nfn

]
i
rn

′
it reflects that researcher n internalizes that

they can raise the status of other researchers by investigating in field l because rlt =
∑N

i=1 r
l
it. The

last two positive terms reflect that the researcher internalizes that their choice of field impacts the
number of researchers working in that field, and consequently the citations of other researchers and
variance of the signals about the quality of each topic. It is immediate that the benefit of researching
a given active topic is increasing in the number of other researchers in the topic (i.e., rlt).

If the researcher instead tries to investigate their own topic, then the payoff from this is risky
endeavor is

vEnt = sup
l∈Et

−λ (E [fn (pt + pljul,X−nt)]− fn (pt,X−nt)) . (A.5)

The optimal choice for researcher n is to research an active topic if vRnt > vEnt and to research a new
topic if vRnt ≤ vEnt.

Notice now that vEnt and vRnt are independent of Xnt for researcher n. By symmetry, then, vEn′t and
vRn′t are independent of Xn′t for researcher n′. If no researcher’s optimal research policy depends
on his status, then by rational expectations, researcher n recognizes that researcher n′’s research
policy does not depend on his own status. Consequently, researcher n does not need to keep track
of researcher n′’s status, or that of any other researcher. Consequently, by this argument, it must
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be the case that fn (pt,X−nt) = fn (pt), which is the same for all researchers, and equations (A.4)
and (A.5) simplify to

vRnt = sup
l∈At

{
− λ

(
plte

−γϕAK
(
(R−n,lt + 1) 2−γϕX −R−n,lt

)
+ (1− plt) e

γϕAK
)
fn (pt − pltul)

+ (λ+ γϕX (R−n,lt + 1)) fn (pt)

}
, (A.6)

and
vEnt = sup

l∈Et

−λ (E [fn (pt + pljul)]− fn (pt)) . (A.7)

where

E [fn (pt + pljul)] = Pr (Slj = 1) fn (pt + p1ul) + Pr (Slj = 0) fn (pt + p0ul) , (A.8)

Pr (Slj = 1) = pq1 + (1− p) q0, and Pr (Slj = 0) = 1 − pq1 − (1− p) q0. Because the value of
investigating a new topic is always non-negative, a researcher will always prefer to investigate than
to not research at all. Consequently, the optimal choice of topic is always a non-empty set surely
for all time.

Step 3: Researcher n’s Maximized Hamilton-Jacobi-Bellman Equation

Let l∗nt be the optimal topic for researcher n to research at time t. From the researcher’s Hamilton-
Jacobi-Bellman Equation (A.3), the researcher’s maximized Hamilton-Jacobi-Bellman equation
can be expressed as

0 = −1 +

(
γϕXrl∗ntt

rnl∗ntt
+ λ

∑
l

(rlt + elt) + ρ+ η

)
fn (pt)−

∑
l∈Et

λeltE [fn (pt + pljul)]

− λ
∑
l∈At

rlt

(
plt (1 + rnlt)

−γϕX e−γϕAK + (1− plt) e
γϕAK

)
fn (pt − pltul) , (A.9)

Because researchers will always either research an existing or a new topic from Step 2, it follows
that

∑
l (rlt + elt) = N . Substituting this and the expectation (A.8) into equation (A.9), we arrive
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at

0 = −1 +
(
ρ+ η + γϕXrl∗ntt

rnl∗ntt
+ λN

)
fn (pt)

− λ
∑
l∈Et

elt ((pq1 + (1− p) q0) f (pt + p1ul) + (1− pq1 − (1− p) q0) fn (pt + p0ul))

− λ
∑
l∈At

rlt

(
plt (1 + rnlt)

−γϕX e−γϕAK + (1− plt) e
γϕAK

)
fn (pt − pltul) . (A.10)

Step 4: Incentives to Coordinate on Research Activities

We first consider the incentives to investigate different new topics. Notice that all inactive research
fields are ex ante identical, and therefore deliver equivalent value to all researchers. As such,
fn (pt + pljul) = fn (pt + pl′jul′) if l, l′ ∈ Et. Consequently, we have that for all n ∈ 1, ..., N

vEnt = E [fn (pt + pljul)]− fn (pt) = E [fn (pt + pl′jul′)]− fn (pt) ∀ l, l′ ∈ Et.

Further, because the total value in the Hamilton-Jacobi-Bellman Equation (A.10) of investigating
new research topics for researcher n is∑

l∈Et

λelt ((pq1 + (1− p) q0) f (pt + p1ul′) + (1− pq1 − (1− p) q0) f (pt + p0ul′)− f (pt)) ,

it follows that any combination of investigative efforts enlt
N
n=1,l∈Et

will deliver the same expected
value. To see this, suppose there are 2 researchers and there are two fields, 1 and 2, that are
both inactive. Then, if both researchers only investigate field 1,each earns an expected value from
investigating of

2λ ((pq1 + (1− p) q0) fn (p1, 0) + (1− pq1 − (1− p) q0) fn (p0, 0)− fn (0, 0)) ,

while if one researcher investigates field 1 and one field 2, each earns an expected value from
investigating of

λ ((pq1 + (1− p) q0) fn (p1, 0) + (1− pq1 − (1− p) q0) fn (p0, 0)− fn (0, 0))

+λ ((pq1 + (1− p) q0) fn (0, p1) + (1− pq1 − (1− p) q0) fn (0, p0)− fn (0, 0))

=2λ ((pq1 + (1− p) q0) fn (p1, 0) + (1− pq1 − (1− p) q0) fn (p0, 0)− fn (0, 0)) ,

because both fields deliver the same conditional continuation value regardless of in which a new
topic is discovered. Consequently, any combination of efforts to investigate new topics delivers the
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same value, and only the total effort is identified. Further, conditional continuation values are the
same for all inactive topics.

We now consider the incentives to investigate different active topics. In contrast to the case of
inactive topics, researchers are not indifferent between researching one active topic l versus another
l′ because each may garner different citation counts. Notice that in the absence of career concerns
(i.e., γϕX = 0), active researchers are indifferent to which active topic they research with the same
probability of being significant plj because any combination of research efforts rnlt

N
n=1,l∈At

will
deliver the same expected value. To see this, suppose there are again 2 researchers and there are
two fields, 1 and 2, that are both active and likely significant (i.e., p1j = p2j = p1). Then, if both
researchers only research field 1,each earns an expected value from researching of

2λ
((
p1e

−γϕAK + (1− p1) e
γϕAK

)
fn (0, p1)− fn (p1, p1)

)
,

while if one researcher works on field 1 and one on field 2, each earns an expected value from
researching of

λ
((
p1e

−γϕAK + (1− p1) e
γϕAK

)
fn (0, p1)− fn (p1, p1)

)
+λ
((
p1e

−γϕAK + (1− p1) e
γϕAK

)
fn (p1, 0)− fn (p1, p1)

)
=2λ

((
p1e

−γϕAK + (1− p1) e
γϕAK

)
fn (0, p1)− fn (p1, p1)

)
,

because both fields deliver the same conditional continuation value regardless of in which one
matures. Consequently, any combination of efforts to investigate active topics delivers the same
value, and only the total effort is identified. Further, conditional continuation values are the same
for all active topics.

However, in the presence of career concerns (i.e., γϕX > 0), researcher n is no longer indifferent
toward which topic he researches because of the flow benefit γϕXrltfn (pt) from the rlt additional
citations and the (1 + rnlt)

−γϕX term in the plt (1 + rnlt)
−γϕX e−γϕAKfn (pt − pltul)−fn (pt) benefit

from the field maturing. Both of these additional forces favor coordinating on the same topic as
other researchers.

Consequently, in the presence of career concerns, all researchers who research an active field
coordinate on the same field with the highest likelihood of being significant, i.e., a field for which
plj = p1 before a field for which plj = p0, although on which specific field they coordinate is
indeterminate.
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Because all researchers behave in a symmetric manner and do not distinguish between active topics
that received a high signal Slj = 1 or between active topics that received a low signal Slj = 0, we
can shrink the state space into the number of active fields that received a high signal Slj = 1, L1,
and the number of active fields that received a low signal Slj = 0,L0. The number of inactive fields
is then L − L1 − L0. It follows fn (pt) = f (L1, L0) . Further, because all researchers prioritize
researching an active topic with a high signal over that with a low signal or investigating, we need
only consider the case where L1 ∈ 0, 1.

Step 5: Solving for the Maximized Hamilton-Jacobi-Bellman Equation

Because all researchers face the same incentives to research, it follows that all researchers will
either research an active topic or all will investigate a new topic. Suppose they all investigate a new
topic, in which case there is no active topic with a high signal Slj = 1, and consequently L1 = 0

(otherwise they would research it instead). Then, because all new topics deliver f (1, L0) with
probability pq1 + (1− p) q0 and f (0, L0 + 1) with probability 1 − (pq1 + (1− p) q0), it follows
that researcher n’s value Hamilton-Jacobi-Bellman Equation in this case is

f (0, L0) =
1 + λN (pq1 + (1− p) q0) f (1, L0)

ρ+ η + λN
(A.11)

+
λN (1− pq1 − (1− p) q0) f (0, L0 + 1)

ρ+ η + λN
.

Similarly, if all researchers research an active topic that received a high signal Slj = 1 and L1 = 1,
then researcher n’s value Hamilton-Jacobi-Bellman Equation in this case is instead

f (1, L0) =
1 + λN

(
p12

−γϕXe−γϕAK + (1− p1) e
γϕAK

)
f (0, L0)

ρ+ η + γϕXN + λN
. (A.12)

Finally, if all research an active topic that received a low signal Slj = 0, which will only occur
if L1 = 0 and there is no active topic with a high signal Slj = 1, then researcher n’s value
Hamilton-Jacobi-Bellman Equation in this case is

f (0, L0) =
1 + λN

(
p02

−γϕXe−γϕAK + (1− p0) e
γϕAK

)
f (0, L0 − 1)

ρ+ η + γϕXN + λN
. (A.13)

Because researchers will always research an active topic that that received a high signal Slj = 1,
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we can substitute equation (A.12) (shifting the L1 index forward by 1) into (A.11) to find

f (0, L0) =
1 + λN (pq1 + (1− p) q0)

1+λN(p12−γϕX e−γϕAK+(1−p1)e
γϕAK)f(0,L0)

ρ+η+γϕXN+λN

ρ+ η + λN
. (A.14)

+
λN (1− pq1 − (1− p) q0) f (0, L0 + 1)

ρ+ η + λN

We now have two cases depending on whether it is preferable to research an active topic that
received a low signal Slj = 0 or to continue investigating until researchers discover a topic that
received a high signal Slj = 1.

Case 1: It is preferable to research topics with low signals to investigating new topics. In this case,
we also have that L0 ∈ 0, 1, and we can recover f (0, 1) from equation (A.13) and substitute it
(shifting the L0 index forward by 1) into equation (A.14) to find

f (0, 0) =
1 + λN

ρ+η+γϕXN+λN

ρ+ η + λN
(
1− λN

ρ+η+γϕXN+λN
δ
) , (A.15)

where

δ = (1− pq1 − (1− p) q0)
(
p02

−γϕXe−γϕAK + (1− p0) e
γϕAK

)
+ (pq1 + (1− p) q0)

(
p12

−γϕXe−γϕAK + (1− p1) e
γϕAK

)
> 0.

For the solution to be well-defined, we require that

ρ+ η + λN

(
1− λN

ρ+ η + γϕXN + λN
δ

)
> 0.

Consequently, the optimal research policy for all researchers is to coordinate to research any active
topic, then investigate a new topic once it has matured.

Case 2: It is preferable to investigate new topics than to research topics with low signals. In this
case, we never use equation (A.13). Instead, we recognize that f (0, L0 + 1) = f (0, L0) = f (0)

(we can ignore the count of low signal topics), i.e., the new topic with a low signal is abandoned,
and equation (A.14) reduces to

f (0) =
1 + λN

ρ+η+γϕXN+λN
(pq1 + (1− p) q0)

ρ+ η + λN (1− χ)
, (A.16)
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where

χ = 1− (pq1 + (1− p) q0)

(
1−

λN
(
p12

−γϕXe−γϕAK + (1− p1) e
γϕAK

)
ρ+ η + γϕXN + λN

)
> 0,

which is decreasing in γϕX , and it follows that

f (1) =
1 + λN

(
p12

−γϕXe−γϕAK + (1− p1) e
γϕAK

)
f (0)

ρ+ η + γϕXN + λN
. (A.17)

For the solution to be well-defined, we require that

ρ+ η + λN (1− χ) > 0.

Consequently, the optimal research policy for all researchers is to coordinate to research only active
topics with high signals Slj = 1, and to investigate a new topic otherwise.8

Step 6: Pecking Order for Research Activities

We have already identified that all researchers will prioritize researching topics with high signals
Slj = 1. We now need to examine when an individual researcher has incentive to research an active
topic with a low signal. The marginal value of researching the active topic, vRnt, from equation
(A.6) in this case simplifies to

vRnt|Slj=0 = (λ+ γϕXrlt) f (0, 1)− λ
(
p02

−γϕXe−γϕAK + (1− p0) e
γϕAK

)
f (0, 0) , (A.18)

while the marginal value of investigating from equation (A.5) is

vEnt = −λ ((pq1 + (1− p) q0) f (1, 1) + (1− pq1 − (1− p) q0) f (0, 2)− f (0, 1)) . (A.19)

For it to be preferable to investigate new topics and ignore active topics with low signals, we require
that vEnt ≥ vRnt|Slj=0, i.e.,

γϕXrltf (0, 1)− λ
(
p02

−γϕXe−γϕAK + (1− p0) e
γϕAK

)
f (0, 0)

≤− λ ((pq1 + (1− p) q0) f (1, 1) + (1− pq1 − (1− p) q0) f (0, 2)) . (A.20)

8This characterization fails in the extreme case that all fields have active topics with low signals, in which case there
is a bottleneck and researchers are forced to complete one of these fields to then investigate to try to discover a high
signal field. We consequently consider L to be sufficiently large that this happens with an arbitrarily low probability.
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Considering we are in Case 2 from Step 5, we recognize f (0, 2) = f (0, 1) = f (0, 0) = f (0) ,

and substituting with equations (A.17) and (A.16), condition (A.20) when one researcher deviates
to research the active topic (i.e., rlt = 1) (and assuming ρ+ η + λN (1− χ) > 0) reduces to

0 ≥ γϕX + λ
(
1− p02

−γϕXe−γϕAK − (1− p0) e
γϕAK

)
− (p1 − p0)

(
eγϕAK − 2−γϕXe−γϕAK

)
λN

λ (pq1 + (1− p) q0)

ρ+ η + γϕXN + λN
. (A.21)

This is a conservative incentive compatibility condition because if one researcher has incentive to
deviate, then m > 1 researchers have stronger incentive to deviate through the higher citation count
to deviating. This ensures there is no coordination failure in which all researchers may suddenly
revert to not researching active speculative topics.

Suppose there are no career incentives (i.e., ϕX = 0), then the condition (A.21) reduces to

1− p0e
−γϕAK − (1− p0) e

γϕAK − (p1 − p0)
(
eγϕAK − e−γϕAK

) λN (pq1 + (1− p) q0)

ρ+ η + λN
≤ 0.

(A.22)

Given that p1 > p0 by construction, and eγϕAK > e−γϕAK ,it follows that the final term on the
left-hand side of condition (A.22) is negative. Further, since 1 − p0e

−γϕAK − (1− p0) e
γϕAK is

increasing in p0 and negative when p0 < 1−e−γϕAK

1−e−2γϕAK , we have that for p0 < 1−e−γϕAK

1−e−2γϕAK , condition
(A.22) is satisfied and researchers will never research an active topic with a low signal Sjl = 0.

In contrast, suppose researchers have career concerns (i.e., ϕX > 0). Let LHS represent the
left-hand side of condition (A.21). Then, it is immediate that

dLHS

dϕX

= 1 + λ

(
p0 − (p1 − p0)

λN (pq1 + (1− p) q0)

ρ+ η + γϕXN + λN

)
2−γϕXe−γϕAK log 2

+ (p1 − p0)
(
eγϕAK − 2−γϕXe−γϕAK

)
(pq1 + (1− p) q0)

(
λN

ρ+ η + γϕXN + λN

)2

which is increasing in ϕX for ϕX sufficiently large. Consequently, there is a critical ϕX , ϕ∗
X , such

that for ϕX ≥ ϕ∗
X , condition (A.21) fails and researchers will instead research active topics that

receive low signals. Further, if p0 ≥ (p1 − p0)
λN(pq1+(1−p)q0)
ρ+η+γϕXN+λN

, then dLHS
dϕX

≥ 0, and for ϕX < ϕ∗
X ,

condition (A.22) is satisfied.

Step 7: Transversality and Sufficiency
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It is a necessary condition that the value function satisfy the transversality condition

lim
T→∞

E
[
VnTn

i−1
(T,XnT ,pT ,X−nT , AT )

]
= lim

T→∞
E
[
−e−(ρ+η)(T−Tn

i−1)−γϕAKAT−γϕXXnT f (L0, L1)
]
= 0.

(A.23)

It is immediate from Step 5 that f (L0, L1) ≥ 0 is bounded. Because status Xnt is non-negative,
−e−γϕXXnt is bounded from above by 0 and below by −1. In addition, −e−(ρ+η)(T−Tn

i−1)−γϕAKAT

is bounded from above by 0 and, given the jumps in At are finite and (at maximum) arrive slower
than the rate of discounting ρ + η, it follows that −e−(ρ+η)(T−Tn

i−1)−γϕAKAT is also bounded in
expectation from below. Consequently, the transversality condition (A.23) is satisfied.

Standard arguments establish that it is sufficient that the value function Vnt (XnT ,pT ,X−nT , AT )

satisfies the Hamilton-Jacobi-Bellman Equation (A.10) and the transversality condition (A.23) for
it to solved researcher n’s problem and delivers value UnTn

i−1
.

Consequently, we have solved the researchern’s problem and, as a consequence, the full equilibrium
in the special case in which ξ = 0.

Step 8: The Case in which ξ > 0 and κ > 0

We can draw insights from the special case in which ξ = 0 to discern the equilibrium in which
ξ > 0, and negative news about promising topics can arrive. This is true regardless of effort cost κ.

It is immediate that the best situation for researchers still is that there is a promising topic that
received an initial signal of Slj = 1. Amplified by career concerns, all researchers will research any
active topic with a high signal. However, there is now the possibility that topic will receive a second,
negative signal before it matures. Because researching an active promising topic is preferable to
researching a speculative topic or investigating a new topic, researchers will research the topic until
either it matures or the negative signal arrives.

If a negative signal arrives, then by the memory-less property of Poisson processes, this is equivalent
to the arrival of new speculative topic. As such, our analysis for whether the researchers research
the speculative topic or abandon it remains valid.

The normalized value of an active promising topic consequently now satisfies

f (1, L0) =
eκ + λN

(
p12

−γϕXe−γϕAK + (1− p1) e
γϕAK

)
f (0, L0) + ξf (0, L0 + 1)

ρ+ η + ξ + γϕXN + λN
, (A.24)
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We again have two cases depending on whether it is preferable to research an active topic that
received a low signal Slj = 0 or to continue investigating until researchers discover a topic that
received a high signal Slj = 1.

Case 1: It is preferable to research topics with low signals to investigating new topics. We can
repeat our procedure in Step 5 in this case to find

f (0, 0) =
1 + λN

ρ+η+γϕXN+λN

ρ+ η + λN
(
1− λN

ρ+η+γϕXN+λN
θ
)eκ, (A.25)

where

θ = − (p1 − p0)
ρ+ η + γϕXN + λN

ρ+ η + ξ + γϕXN + λN
(pq1 + (1− p) q0)

(
eγϕAK − 2−γϕXe−γϕAK

)
(A.26)

+ p02
−γϕXe−γϕAK + (1− p0) e

γϕAK .

Notice because ∂θ
∂ϕX

< 0, we have that ∂f(0,0)
∂ϕX

< 0.

For the solution to be well-defined, we require that

ρ+ η + λN

(
1− λN

ρ+ η + γϕXN + λN
θ

)
> 0.

Case 2: It is preferable to investigate new topics than to research topics with low signals. We can
repeat our procedure in Step 5 in this case to find

f (0) =
1 + λN(pq1+(1−p)q0)

ρ+η+ξ+γϕXN+λN

ρ+ η + λN (1− ω)
eκ, (A.27)

where

ω = 1− (pq1 + (1− p) q0)

(
1−

λN
(
p12

−γϕXe−γϕAK + (1− p1) e
γϕAK

)
+ ξ

ρ+ η + ξ + γϕXN + λN

)
, (A.28)

which is again decreasing in ϕX , and that

f (1) =
eκ + λN

(
p12

−γϕXe−γϕAK + (1− p1) e
γϕAK

)
f (0) + ξf (0)

ρ+ η + ξ + γϕXN + λN
. (A.29)

Notice again that because ∂ω
∂ϕX

< 0, we have that ∂f(0)
∂ϕX

< 0.

We can further derive the necessary and sufficient condition for a researcher not to deviate to
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research an active speculative topic (i.e., rlt = 1) instead of investigating a new one. Based on
our derivation in Step 6, we can substitute equations (A.27) and (A.29) into condition (A.20),
recognizing f (0, 2) = f (0, 1) = f (0, 0) = f (0) and assuming ρ+ η+λN (1− ω) > 0, to arrive
at

0 ≥ γϕX + λ
(
1− p02

−γϕXe−γϕAK − (1− p0) e
γϕAK

)
− (p1 − p0)

(
eγϕAK − 2−γϕXe−γϕAK

)
λN

λ (pq1 + (1− p) q0)

ρ+ η + ξ + γϕXN + λN
. (A.30)

Analogous arguments to those in Step 6 establish that for p0 < 1−e−γϕAK

1−e−2γϕAK , a researcher would never
deviate to research a speculative topic when there are no career incentives, i.e., γϕX = 0. Similarly,
there is a critical ϕX , ϕ∗

X , such that for ϕX ≥ ϕ∗
X , condition (A.30) fails and researchers will instead

research active topics that receive low signals. Noticeably, these results do not on the effort cost, κ.

The equilibrium strategies we characterized in the special case when ξ = 0 and κ = 0 therefore
remain valid when ξ > 0 and κ > 0.

What remains to be shown is that a researcher has the benefits of research exceed the effort costs.
Notice that researching an active topic must yield (weakly) conditionally more value to a researcher
than investigating to find a new topic. Consequently, we need only show that a researcher wishes
to investigate a new topic despite the effort cost.

Substituting our verified solution, Vnt (Xnt,pt,X−nt) = −e−(ρ+η)t−vaAt−vnXntfn (L1, L0), the
Hamilton-Jacobi-Bellman equation for a investigating a new topic is given by

0 ≥ min 1, eκ + λN ((pq1 + (1− p) q0) f (1, 0) + (1− pq1 − (1− p) q0) f (0, 1)− f (0, 0))

− (ρ+ η) f (0, 0) .

Consequently, we need only verify the one-shot deviation principle that

1 ≥ eκ + λN ((pq1 + (1− p) q0) f (1, 0) + (1− pq1 − (1− p) q0) f (0, 1)− f (0, 0)) , (A.31)

for it to be optimal for a researcher always to engage in research.

In Case 2, when active speculative topics are abandoned, f (0, 1) = f (0) and f (1, 0) = f (1) , and
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condition (A.31) from equations (A.27) and (A.29) reduces to

κ ≤ κ∗
1 = − log

(1 +
λN (pq1 + (1− p) q0)

ρ+ η + ξ + γϕXN + λN

1−
ρ+ η + ξ + γϕXN + λN + λN (pq1 + (1− p) q0)
(ρ+η)(ρ+η+ξ+γϕXN+λN)

ρ+η+γϕXN+λN(1−p12
−γϕX e−γϕAK−(1−p1)e

γϕAK)
+ λN (pq1 + (1− p) q0)


 .

(A.32)

Similarly, for Case 1, when active speculative topics are researched to maturity, condition (A.31)
from equation (A.25) reduces to

κ ≤ κ∗
2 = − log

(
1 +

(
(pq1 + (1− p) q0) ξ

ρ+ η + ξ + γϕXN + λN
+ 1

)
λN

ρ+ η + γϕXN + λN
(A.33)

+
λN

(
1 + λN

ρ+η+γϕXN+λN

)
χ

ρ+ η + λN
(
1− λN

ρ+η+γϕXN+λN
θ
)).

where

χ = (pq1 + (1− p) q0)
λN (p1 − p0)

(
2−γϕXe−γϕAK − eγϕAK

)
ρ+ η + ξ + γϕXN + λN

+

(
(pq1 + (1− p) q0) ξ

ρ+ η + ξ + γϕXN + λN
+ 1

)
λN

(
p02

−γϕXe−γϕAK + (1− p0) e
γϕAK

)
ρ+ η + γϕXN + λN

− 1. (A.34)

Step 9: The Participation Constraint

Notice that the participation constraint (8) is tightest when there is no active topic. Consequently,
if it is satisfied in this case, then it will also be satisfied when there is an active topic. We again
have two cases depending on whether it is preferable to research an active topic that received a low
signal Slj = 0 or to continue investigating until researchers discover a topic that received a high
signal Slj = 1.

Case 1: It is preferable to research topics with low signals to investigating new topics. At
inception when there is no active topic, a researcher’s value function because XnTn

i−1
= 0 and

cnTn
i−1

= ϕAATn
i−1

K

VnTn
i−1

(
T n
i−1, XnTn

i−1
, ATn

i−1

)
= −e

−γcnTn
i−1f (0, 0) ≥ −e

−γcnTn
i−1

ρ+ η
,

from which it follows that we require from equation (A.25)

1 + λN
ρ+η+γϕXN+λN

ρ+ η + λN
(
1− λN

ρ+η+γϕXN+λN
θ
)eκ ≤ 1

ρ+ η
, (A.35)
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We can rewrite the participation constraint as

κ ≤ κpc
1 = log

 1

ρ+ η

ρ+ η + λN
(
1− λN

ρ+η+γϕXN+λN
θ
)

1 + λN
ρ+η+γϕXN+λN

 . (A.36)

Case 2: It is preferable to investigate new topics than to research topics with low signals. At
inception when there is no active topic, a researcher’s value function because XnTn

i−1
= 0 and

cnTn
i−1

= ϕAATn
i−1

K

VnTn
i−1

(
T n
i−1, XnTn

i−1
, ATn

i−1

)
= −e

−γcnTn
i−1f (0) ≥ −e

−γcnTn
i−1

ρ+ η
,

from which it follows that we require from equation (A.25)

1 + λN(pq1+(1−p)q0)
ρ+η+ξ+γϕXN+λN

ρ+ η + λN (1− ω)
eκ ≤ 1

ρ+ η
, (A.37)

and the left-hand-side is again decreasing in ϕX . We can rewrite the participation constraint as

κ ≤ κpc
1 = log

(
1

ρ+ η

ρ+ η + λN (1− ω)

1 + λN(pq1+(1−p)q0)
ρ+η+ξ+γϕXN+λN

)
. (A.38)

Consequently, the participation constraint is relaxed the higher is the reward for citations, ϕX .

Proof of Proposition 2:

We consider both cases depending on whether it is preferable to research an active topic that
received a low signal Slj = 0 or to continue investigating until researchers discover a topic that
received a high signal Slj = 1.

Case 1: From Step 8 of the proof of Proposition 1, f (0, 0) is decreasing in ϕX . It is also immediate
that f (0, 0) is increasing in κ. In addition, we recognize from rewriting θ from equation (A.26) as

θ = (1− pq1 + (1− p) q0)
(
p02

−γϕXe−γϕAK + (1− p0) e
γϕAK

)
+ (pq1 + (1− p) q0)

ρ+ η + γϕXN + λN

ρ+ η + ξ + γϕXN + λN

(
p12

−γϕXe−γϕAK + (1− p1) e
γϕAK

)
+

ξ (pq1 + (1− p) q0)

ρ+ η + ξ + γϕXN + λN

(
p02

−γϕXe−γϕAK + (1− p0) e
γϕAK

)
, (A.39)

that θ is increasing in γ for γ sufficiently large, and therefore so is f (0, 0). It is also immediate that
θ is decreasing in p0 and p1, and therefore so is f (0, 0).
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Consequently, the left-hand-side of the participation constraint (A.35) is decreasing in ϕX , p0,
and p1, relaxing the constraint, and increasing in κ and γ for γ sufficiently large, tightening the
constraint.

Case 2: From Step 8 of the proof of Proposition 1, f (0) is decreasing in ϕX . It is further immediate
that f (0) is increasing in κ. In addition, we recognize that ω from equation (A.28) is increasing in
γ for γ sufficiently large, and therefore so is f (0), while it is decreasing in p1, and therefore so is
f (0).

Consequently, the left-hand-side of the participation constraint (A.37) is decreasing in ϕX and p1,
relaxing the constraint, and increasing in κ and γ for γ sufficiently large, tightening the constraint.

Proof of Proposition 3:

Let the value function for researchern in the first-best economy with costly effort be e−(ρ+η)tvn (At, L1, L0),
whereL0 is again the number of active speculative andL1 is the number of active promising research
topics.

Researching Active topics: Because effort is contractible, for it to be optimal to have researcher n
research an active speculative topic if m− 1 other researchers are actively researching it at time t,
it must be the case by the Hamilton-Jacobi-Bellman Equation for researcher n that

−e−
γ
N
AtK+κ + λm (p0vn (At + 1, L1, L0 − 1) + (1− p0) vn (At − 1, L1, L0 − 1)− vn (At, L1, L0))

−ρvn (At, L1, L0) ≥

−e−
γ
N
AtK − λ (m− 1) (p0vn (At + 1, L1, L0 − 1) + (1− p0) vn (At − 1, L1, L0 − 1)− vn (At, L1, L0))

−ρvn (At, L1, L0).

(A.40)

We focus on the expected benefit for the M th researcher to ensure that having M researchers
actively researching represents a Pareto improvement. The remaining N −M researchers who are
not actively researching are clearly better off if those who are required to provide effort are better
off.

Conjecturing that vn (At, L1, L0) = −e−
γ
N
AtKhn (L1, L0) ,condition A.40 reduces to

eκ + λ
((

p0e
− γ

N
K + (1− p0) e

γ
N
K
)
hn (L1, L0 − 1)− hn (L1, L0)

)
≤ 1. (A.41)

If having a speculative topic is socially valuable, then it must be the case that hn (L1, L0) <
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hn (L1, L0 − 1). In addition, because p0 < 1
2
, we have thatp0 < 1−e−

γ
N

K

1−e−2
γ
N

K
and consequently

p0e
− γ

N
K + (1− p0) e

γ
N
K > 1. These two observations imply that(

p0e
− γ

N
K + (1− p0) e

γ
N
K
)
hn (L1, L0 − 1)− hn (L1, L0) > hn (L1, L0 − 1)− hn (L1, L0) > 0,

and because κ > 0 that condition A.41 fails. Consequently, it is not socially optimal (for any m) to
research a speculative topic.

In contrast, for it to be optimal to have researcher n research an active promising topic if m−1 other
researchers are actively researching it at time t, it must be the case by the Hamilton-Jacobi-Bellman
Equation for researcher n that

−e−
γ
N
AtK+κ + λm (p1vn (At + 1, L1 − 1, L0) + (1− p1) vn (At − 1, L1 − 1, L0)− vn (At, L1, L0))

−ρvn (At, L1, L0) + ξ (vn (At, L1 − 1, L0 + 1)− vn (At, L1, L0)) ≥

−e−
γ
N
AtK − λ (m− 1) (p1vn (At + 1, L1 − 1, L0) + (1− p1) vn (At − 1, L1 − 1, L0)− vn (At, L1, L0))

−ρvn (At, L1, L0) + ξ (vn (At, L1 − 1, L0 + 1)− vn (At, L1, L0)),

(A.42)

where the last term in each expression reflects the possibility that bad news arrives about the topic.
Because this arrival is independent of the number of active researchers in the topic, it does not
meaningfully impact the optimality condition.

Conjecturing that vn (At, L1, L0) = −e−
γ
N
AtKhn (L1) (where we drop the L0 argument because it

is never optimal to research a speculative topic), condition A.42 reduces to

eκ + λ
((

p1e
− γ

N
K + (1− p1) e

γ
N
K
)
hn (L1 − 1)− hn (L1)

)
≤ 1. (A.43)

This is the key condition we will evaluate after solving for researcher’s value function.

Investigating a New topic: We assume for now that it is optimal for m researchers to to research an
active promising topic. In this case, in equilibrium, there will be either zero or one active promising
topics. In contrast, we have established that the principal would abandon any speculative active
topic.

For it to be optimal for M ≤ N researchers to investigate a new topic, there cannot be an active
promising topic it must be the case by the Hamilton-Jacobi-Bellman Equation for researcher n’s
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value function in the first-best economy with costly effort, e−(ρ+η)tvn (At, L1),

−e−
γ
N
AtK+κ − λM (pq1 + (1− p) q0) (vn (At, 1)− vn (At, 0))

− (ρ+ η) vn (At, 0) ≥

−e−
γ
N
AtK + λ (M − 1) (pq1 + (1− p) q0) (vn (At, 1)− vn (At, 0))

− (ρ+ η) vn (At, 0), (A.44)

where pq1 + (1− p) q0 is the probability a new topic is promising, and

(ρ+ η + λM) vn (At, 0) = −e−
γ
N
AtK+κ + λM (pq1 + (1− p) q0) (vn (At, 1)− vn (At, 0)) ,

(A.45)
and

(ρ+ η) vn (At, 1) = −e−
γ
N
AtK+κ + λm (p1vn (At + 1, 0) + (1− p1) vn (At − 1, 0)− vn (At, 1)) ,

+ ξ (vn (At, 0)− vn (At, 1)) (A.46)

are the value functions conditional on having researcher n investigating and researching an active
promising topic, respectively. The last term in equation A.46 reflects the arrival of negative news.

Let us conjecture that vn (At, L1) = −e−
γ
N
AtKhn (L1) ,from which follows that condition (A.44)

reduces to
1− eκ + λ (pq1 + (1− p) q0) (hn (0)− hn (1)) ≥ 0, (A.47)

equation (A.45) reduces to

hn (0) =
eκ + λM (pq1 + (1− p) q0)hn (1)

ρ+ η + λM (pq1 + (1− p) q0)
, (A.48)

and equation (A.46) reduces to

hn (1) =
eκ + λm

(
p1e

− γ
N
K + (1− p1) e

γ
N
K
)
hn (0) + ξhn (0)

ρ+ η + ξ + λm
, (A.49)

which confirms the conjecture. Notice that p1 ≥ 1−e−
γ
N

K

1−e−2
γ
N

K
implies that p1e−

γ
N
K+(1− p1) e

γ
N
K ≤ 1.

Combining equations (A.48) and (A.49), we find

hn (0) =
eκ

ρ+ η + λm
(
1− p1e

− γ
N
K − (1− p1) e

γ
N
K
)

λM(pq1+(1−p)q0)
ρ+η+ξ+λm+λM(pq1+(1−p)q0)

, (A.50)
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and

hn (0)− hn (1) =
eκ

λM (pq1 + (1− p) q0) + (ρ+ η) ρ+η+ξ+λm+λM(pq1+(1−p)q0)

λm
(
1−p1e

− γ
N

K−(1−p1)e
γ
N

K
) > 0. (A.51)

Substituting equation (A.51) into condition (A.51), condition (A.51) becomes

λ (pq1 + (1− p) q0)

λM (pq1 + (1− p) q0) + (ρ+ η) ρ+η+ξ+λm+λM(pq1+(1−p)q0)

λm
(
1−p1e

− γ
N

K−(1−p1)e
γ
N

K
) ≥ 1− e−κ. (A.52)

The Two Optimality Conditions:

Substituting equations A.50 and A.51 into conditions A.43, we arrive at the optimality condition to
research an active promising field (recognizing there is, at most, one active promising field at time
t)

1

m

ρ+ η + ξ + λM (pq1 + (1− p) q0)

λM (pq1 + (1− p) q0) + (ρ+ η) ρ+η+ξ+λm+λM(pq1+(1−p)q0)

λm
(
1−p1e

− γ
N

K−(1−p1)e
γ
N

K
) ≥ 1− e−κ. (A.53)

Consequently, for it to be optimal to investigate to find new topics and to research any active
promising topics, conditions A.53 and A.52 must be satisfied. The principal’s goal is to have both
constraints be as tight as possible to maximize the number of active researchers. It is intuitive that
having more researchers research active promising topics (i.e., higher m) relaxes the constraint on
M in condition A.52, while a higher M tightens it.

If M ≥ m, then it is immediate that if condition A.52 is satisfied, then so is condition A.53. We
focus on this case when m is as large as possible, i.e., M = m, as this slackens condition A.52 the
most. Then, we can rewrite condition condition A.52 as

f (m) =
λ (pq1 + (1− p) q0)

λm (pq1 + (1− p) q0) + (ρ+ η) ρ+η+ξ+λm(1+pq1+(1−p)q0)

λm
(
1−p1e

− γ
N

K−(1−p1)e
γ
N

K
) ≥ 1− e−κ. (A.54)

Notice that f (m) is hump-shaped in m, equaling zero at m ∈ 0,∞. There are consequently
either zero solutions to condition A.54 or one value of m, m∗, for which f (m∗) ≥ 1 − e−κ and
f (m∗ + 1) < 1− e−κ, and this m∗ is decreasing in κ (and always equal to N , the maximum value
of m, when κ = 0). By feasibility, the active number of researchers is the largest m ≤ N that
satisfies condition A.54. It may be the case that no feasible m satisfies condition A.54, in which
case there is no solution.
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Further, if κ ≤ κ∗, where

κ∗ = − log

1− λ (pq1 + (1− p) q0)

λN (pq1 + (1− p) q0) + (ρ+ η) ρ+η+ξ+λN(1+pq1+(1−p)q0)

λN
(
1−p1e

− γ
N

K−(1−p1)e
γ
N

K
)
 , (A.55)

then it is optimal for all N researchers to actively research at all times.

The Participation Constraint:

Finally, the participation constraint (8) is given by

−e
−γcnTn

i−1hn (0) ≥ −e
−γcnTn

i−1

ρ+ η
, (A.56)

which reduces from equation (A.50) to

κ ≤ κpc = log

(
ρ+ η + λm

(
1− p1e

− γ
N
K − (1− p1) e

γ
N
K
) λM(pq1+(1−p)q0)

ρ+η+ξ+λm+λM(pq1+(1−p)q0)

ρ+ η

)
.

(A.57)

Proof of Proposition 4:

We need only verify that condition A.54 fails when m = 1 and κ = κ∗. Substituting with κ∗ from
equation A.55 into condition A.54 when it fails, we require that

f (1) =
λ (pq1 + (1− p) q0)

λ (pq1 + (1− p) q0) + (ρ+ η) ρ+η+ξ+λ(1+pq1+(1−p)q0)

λ
(
1−p1e

− γ
N

K−(1−p1)e
γ
N

K
)

≤ λ (pq1 + (1− p) q0)

λN (pq1 + (1− p) q0) + (ρ+ η) ρ+η+ξ+λN(1+pq1+(1−p)q0)

λN
(
1−p1e

− γ
N

K−(1−p1)e
γ
N

K
) , (A.58)

which is satisfied if(
1− p1e

− γ
N
K − (1− p1) e

γ
N
K
)
N ≤ (ρ+ η) (ρ+ η + ξ)

λ2 (pq1 + (1− p) q0)
. (A.59)

Because the left-hand size of Equation A.59is increasing in N , fixing p1, it follows that if N < Ñ ,
where Ñ is the N such that Equation A.59 is satisfied with equality, then zero active researchers
constitutes a Nash Equilibrium.

That zero versusN active researchers constitutes a Pareto inferior equilibrium is immediate because
all researchers are ex-ante identical and, by revealed preference, the principal prefers to actively

57



investigate and research promising topics than to not.

Proof of Proposition 5:

Step 1: Principal’s Indirect Utility Function

Given the linearity of the principal’s objective in Yt and Xnt, and that researchers are ex-ante
identical up to their status, we can solve for the principal’s problem researcher-by-researcher. Let
e−ρtUPn (A,X, S)be the per capital value the principal derives from researcher n, where S = ∅ if
there is no active topic, S = 1 if there is an active promising topic, and S = 0 if there is an active
speculative topic. The Hamilton-Jacobi-Bellman Equation governing the principal’s value when
there is no active topic is

0 = λN ((pq1 + (1− p) q0)UPn (A,X, 1) + (1− pq1 − (1− p) q0)UPn (A,X, 0)− UPn (A,X, ∅))

(A.60)

+
1

N
(1− ϕY )AK − ϕXX + η (UPn (A, 0, ∅)− UPn (A,X, ∅))− ρUPn (A,X, ∅) .

Its value when there is an active promising topic similarly has law of motion

0 = λN (p1UPn (A+ 1, X + log (1 +N) , ∅) + (1− p1)UPn (A− 1, X, ∅)− UPn (A,X, 1))

+
1

N
(1− ϕY )AK − ϕXX

+ ∂XUPn (A,X, 1)N + η (UPn (A, 0, 1)− UPn (A,X, 1))− ρUPn (A,X, 1) . (A.61)

If speculative topics are not researched, we can conjecture that

0 = λN (p0UPn (A+ 1, X + log (1 +N) , ∅) + (1− p0)UPn (A− 1, X, ∅)− UPn (A,X, 0))

(A.62)

+
1

N
(1− ϕY )AK − ϕXX

+ ∂XUPn (A,X, 0)N + η (UPn (A, 0, 0)− UPn (A,X, 0))− ρUPn (A,X, 0) .

We now consider two cases depending on whether only promising or all topics are researched. This
is determined by each researcher’s incentive compatibility constraint such that if career incentives,
ϕX , are sufficiently high, then all topics are researched, while if it is not, then only promising topics
are researched to maturity.
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Case 1: Suppose researchers only pursue promising topics, and prefer to investigate a new topic
than to research a speculative topic. Let us conjecture that

UPn (A,X, S) = u0 (S) + uA (S)A+ uX (S)X,

and UPn (A,X, 0) = UPn (A,X, ∅). Substituting these conjectures into equations A.60 and A.61,
we find

uA (∅) = uA (1) =
1

ρN
(1− ϕY )K,

uX (∅) = uX (1) = − ϕX

ρ+ η
,

and

UPn (A,X, S) = −u (s)

ρ

(
ϕX

ρ+ η
N +

ϕX

ρ+ η
λNp1 log (1 +N) + λN (1− 2p1)

1

ρN
(1− ϕY )K

)
+

1

ρN
(1− ϕY )AK − ϕX

ρ+ η
X,

where

u (∅) = λN (pq1 + (1− p) q0)

ρ+ λN (1 + pq1 + (1− p) q0)
,

u (1) =
ρ+ λN (pq1 + (1− p) q0)

ρ+ λN (1 + pq1 + (1− p) q0)
.

If there is no active topic and we initialize all statuses at zero, then the principal’s indirect utility
function is

UPn (A, 0, ∅) = −1

ρ

λN (pq1 + (1− p) q0)

ρ+ λN (1 + pq1 + (1− p) q0)

(
ϕX

ρ+ η
N +

ϕX

ρ+ η
λNp1 log (1 +N)

)
− 1

ρ

λN (pq1 + (1− p) q0)

ρ+ λN (1 + pq1 + (1− p) q0)
λN (1− 2p1)

1

ρN
(1− ϕY )K +

1

ρN
(1− ϕY )AK,

Case 2: Suppose researchers pursue both promising and speculative topics, and prefer to research
them to investigating a new topic. We again conjecture that

UPn (A,X, S) = u0 (S) + uA (S)A+ uX (S)X,

59



and substitute this conjecture in equations A.60-A.62 to find

uA (∅) = uA (1) = uA (0) =
1

ρN
(1− ϕY )K,

uX (∅) = uX (1) = uA (0) = − ϕX

ρ+ η
,

and
UPn (A,X, S) =

1

ρN
(1− ϕY )AK − ϕX

ρ+ η
X + u0 (s) ,

where

u0 (∅) = −1

ρ

λN

ρ+ 2λN

(
ϕX

ρ+ η
N + λN

ϕX

ρ+ η
p log (1 +N) + λN (1− 2p)

1

ρN
(1− ϕY )K

)
,

u0 (1) =
− ϕX

ρ+η
λNp1 log (1 +N)− λN (1− 2p1)

1
ρN

(1− ϕY )K − ϕX

ρ+η
N

ρ+ λN
+

λN

ρ+ λN
u0 (∅)

u0 (0) =
− ϕX

ρ+η
λNp0 log (1 +N)− λN (1− 2p0)

1
ρN

(1− ϕY )K − ϕX

ρ+η
N

ρ+ λN
+

λN

ρ+ λN
u0 (∅) .

If there is no active topic and we initialize all statuses at zero, then the principal’s indirect utility
function is

UPn (A, 0, ∅) = −1

ρ

λN

ρ+ 2λN

(
ϕX

ρ+ η
N + λN

ϕX

ρ+ η
p log (1 +N) + λN (1− 2p)

1

ρN
(1− ϕY )K

)
+

1

ρN
(1− ϕY )AK.

Step 2: Optimal Choice of Contract Loadings

The principal maximizes its objective subject to the participation constraint, equation (8), which
will bind in equilibrium. Let Ξn be the Lagrange multiplier on the participation constraint. Given
the linearity of the principal’s optimization program in ϕA, we can take the first-order necessary
condition for the optimal choice of ϕA when only promising topics are pursued, recognizing the
participation constraint binds and substituting with it,

0 = − 1

ρN
AK +

1

ρN

λN (pq1 + (1− p) q0)

ρ+ λN (1 + pq1 + (1− p) q0)

λN

ρ
(1− 2p1)K

+ Ξn

e−γϕAAtK

ρ+η
λN λN

ρ+η+γϕXN+λN

ρ+ η + λN
(
1− λN

ρ+η+γϕXN+λN
θ
)∂ϕA

θ, (A.63)
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where

∂ϕA
θ = −γK (p1 − p0)

ρ+ η + γϕXN + λN

ρ+ η + ξ + γϕXN + λN
(pq1 + (1− p) q0)

(
eγϕAK + 2−γϕXe−γϕAK

)
+ γK (1− p0) e

γϕAK ,

and when all topics are pursued

− 1

ρN
AK +

1

ρ

λN

ρ+ 2λN
λN (1− 2p)

1

ρN
K + Ξn

e−γϕAAtK

ρ+η
λN

ρ+ η + λN (1− ω)
∂ϕA

ω = 0, (A.64)

where
∂ϕA

ω = γK (pq1 + (1− p) q0)
λN

(
−p12

−γϕXe−γϕAK + (1− p1) e
γϕAK

)
ρ+ η + ξ + γϕXN + λN

.

The optimal choice of ϕAin both scenarios trades off the marginal present-value cost of rewarding
researchers with additional output, which includes the expected growth in output from researching,
with the relaxation of the participation constraint through raising researchers’ expected lifetime
utility.

Finally, we can take the first-order condition to find the optimal ϕX when only promising topics are
pursued, recognizing the participation constraint binds and substituting with it,

0 = −1

ρ

λN (pq1 + (1− p) q0)

ρ+ λN (1 + pq1 + (1− p) q0)

(
1

ρ+ η
N +

1

ρ+ η
λNp1 log (1 +N)

)
+ Ξn

e−γϕAAtK

ρ+η
λN

ρ+ η + λN
(
1− λN

ρ+η+γϕXN+λN
θ
)eκ λN

ρ+ η + γϕXN + λN

(
∂ϕX

θ − γNθ

ρ+ η + γϕXN + λN

)

+ Ξn

e−γϕAAtK

ρ+η
λN

(ρ+η+γϕXN+λN)2
λN

1 + λN
ρ+η+γϕXN+λN

, (A.65)

where Ξn is given by Equation A.63and

∂ϕX
θ = − (p1 − p0)

(
1 +

γNξ

(ρ+ η + ξ + γϕXN + λN)2

)
(pq1 + (1− p) q0)

(
eγϕAK − 2−γϕXe−γϕAK

)
.

and when all topics are pursued

0 = −1

ρ

λN

ρ+ 2λN

(
1

ρ+ η
N + λN

1

ρ+ η
p log (1 +N)

)
+ Ξn

e−γϕAAtK

ρ+ η

λN(pq1+(1−p)q0)

(ρ+η+ξ+γϕXN+λN)2

1 + λN(pq1+(1−p)q0)
ρ+η+ξ+γϕXN+λN

+ Ξn

e−γϕAAtK

ρ+η
λN

ρ+ η + λN (1− ω)
eκ∂ϕX

ω, (A.66)
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where Ξn is given by Equation A.64and

∂ϕX
ω = −γN (pq1 + (1− p) q0)

λN
(
p12

−γϕXe−γϕAK + (1− p1) e
γϕAK

)
+ ξ

(ρ+ η + ξ + γϕXN + λN)2
.

Step 3: Minimizing Cost to the Principal

Step 2 provides the necessary conditions for the optimal contract loadings when the contract
incentivizes researchers to research only promising topics and all topics, respectively. However,
the question remains which equilibrium the principal would prefer.

For this, we recognize that given our parameter restrictions on p0and p1, the principal would not
want to reward research in speculative topics if it is not necessary because such research has a
negative net present value and the career incentives required to sustain it, i.e., a high ϕX , accrue a
high cost in compensating researchers. Based on our results from Proposition 1, if researcher effort
costs are sufficiently high, the principal must pay for all research; otherwise, it will restrict ϕX to
be small enough as to not induce the researching of speculative topics.

Step 4: Avoiding Coordination Failure

Since researchers are ex-ante symmetric, either all of them exert effort to research or there is free-
riding. For active researching to be a dominant strategy to free-riding, it must be the case that the
expected utility to researching is higher. Notice that the only difference in compensation between
active researchers and free-riders is that based on status, Xit, indexed by the contract loading ϕX .

From Proposition 4, the incentive to free-ride arises when researchers are compensated based only
on output, i.e., ϕA > 0 and ϕX = 0. Notice this does not depend on the value of ϕA, but reflects
that when individual effort is not rewarded, it need not be incentivized. Consequently, to avoid a
coordination failure, ϕX > 0.

Because researchers are awarded for self-citations, there exists a ϕ
X

such that if ϕX ≥ ϕ
X

, then
zero active researchers is not an equilibrium, i.e., one researcher will find it incentive compatible
to research alone. However, if one researcher finds it optimal to research alone, then a second
researcher must find it optimal to research with the first because this increases both citations and
the likelihood of arrival and maturation of topics. By inductive reasoning, the only equilibrium is
all N researchers actively research.

Notice that ϕ
X

is higher than the minimum ϕX required to incentivize all N researchers to work
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together instead of zero. If the effort cost, κ, is sufficiently high, then the principal induces
researchers to research all topics, even if researching only promising topics is optimal in the
absence of the potential for a coordination failure.
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B Appendix B: Extension with Continuous Learning
In this online appendix, we consider how continually learning about an active topic’s significance
over time impacts researcher behavior. We characterize a more realistic version of our model
by assuming that signals about the viability of a topic constantly arrive over time. As a topic is
researched, researchers are likely to learn more about whether it will turn out to be significant. This
change gives rise to a time-varying probability of the topic being significant. In this setting, all
researchers research an active topic until the probability it is significant falls below some critical
threshold, and this threshold is decreasing in the importance of career concerns, ϕX .

Suppose now that there are no signals at inception about whether a topic is likely significant.
Instead, all topics have an initial prior probability p0 = .5 of being significant. As researchers
work on the topic, however, they receive signals about whether the topic is likely to be significant.
Specifically, at each instant, the new projects in topic j of field n generate a signal Sn

jt about the
topic’s significance πn

j as long as it is active

dSn
jt = πn

j dt+ σdZn
jt +

(
πn
j − Sn

jt−
)
dBn

t , (B.1)

where Zn
jt is a standard Wiener process independent of other Zn′

j′t and σ is the diffusion of the
signal. It is immediate that the common knowledge posterior about the quality of the current topic
in field n given Sn

jkk∈[tj ,t]
∈ Fc

t for t ≥ tj is summarized by pnt = E
[
1πn

j =1 | Fc
t

]
and is given by

the Wonham Filter

dpnt =
pnt (1− pnt)

σ
dẐn

jt +
(
πn
j − pnt−

)
(dBn

t − λmn
t dt) , (B.2)

where dẐn
jt = dZn

jt+
1
σ

(
πn
j − pnt

)
dt is a Fc

t -standard Wiener process by Girsanov’s Theorem, and
dBn

t − λµn
t dt is a martingale jump process that reveals the true πn

j once the topic matures.

Based on our analysis in the baseline model, it is clear that if there is an active topic, all researchers
will focus on working on it. However, there is now the possibility that they may abandon an active
topic to investigate a new one if the likelihood that it is significant, pnt, is sufficiently low. Because
there will be at most one topic on which researchers are working at a given instant, we drop the n

subscript from pnt, and just refer to the probability the current active topic is significant as pt. Our
key result is that the threshold probability p∗ at which a topic is abandoned is decreasing in the
reward for career advancement, ϕX . This is summarized in the following proposition.

Proposition 6. All researchers research any active field as long the probability it is significant, pt,
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exceeds a threshold p∗

p∗ =
eγϕAK − 1+γϕX/λ−1/N

ρ+η+λ
eκ − λ

ρ+η+λ
ρ+η+γϕXN+λN
ρ+η+γϕXN+2λN

(
1 + 1

2

(
2−γϕXe−γϕAK + eγϕAK

)
+ ρ+η

λN

)
eγϕAK − 2−γϕXe−γϕAK

.

(B.3)
This threshold is decreasing in the reward for career advancement, γϕX .

Proof of Proposition 6:

In what follows, we assume the effort cost, κ, is sufficiently small It is immediate from our analysis
in Proposition 1 that researchers will all research an active field before they all investigate a new
one provided that the probability it is significant is sufficiently high. Consequently, to prove our
claim, we focus on the case in which there is one active topic with current probability pt of being
significant, and researchers must choose whether to research it or investigate a new topic.

Let us conjecture that researcher n’s value function takes the form

VnTn
i−1

(t,Xnt, At, pt) = −e−(ρ+η)(t−Tn
i−1)−vaAt−vnXntfn (pt) ,

with the convention that pt = 0 if there is no active topic (i.e., t = 0) or the researchers abandon an
active topic.

Let rnt be the indicator whether researcher n researchers the active topic and ent the indicator whether
he investigates a new topic. Factoring out the e−(ρ+η)(t−Tn

i−1)−vaAt−vnXnt from the value function,
the Hamilton-Jacobi-Bellman Equation for researcher n is then

0 ≥ sup
rn,en,(rnt +ent )

′ιL≤1 ∀ t

{
− evaAt+vnXnt−γϕAAtK−γϕXXnt+κ(rnt +ent )

′ιL + vnfn (pt)
∑
l

(R−n,lt + rnlt) r
n
lt

− λ (R−n,t + rnt )
((
pt (1 + rnt )

−vn e−va + (1− pt) e
va
)
fn (0)− fn (pt)

)
− 1

2
f ′′
n (pt)

(
pnt (1− pnt)

σ

)2

−
∑
l∈Et

λ (E−n,lt + enlt)

(
fn

(
1

2

)
− fn (pt)

)
+ (ρ+ η) fn (pt)

}
. (B.4)

It is immediate that vn = γϕX and va = γϕAK, confirming the conjecture. The Hamilton-Jacobi-
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Bellman Equation (B.4) consequently reduces to

0 ≥ sup
rn,en,(rnt +ent )

′ιL≤1 ∀ t

{
− eκ(r

n
t +ent )

′ιL + γϕXfn (pt)
∑
l

(R−n,lt + rnlt) r
n
lt −

1

2
f ′′
n (pt)

(
pnt (1− pnt)

σ

)2

− λ (R−n,t + rnt )
((

pt (1 + rnt )
−γϕX e−γϕAK + (1− pt) e

γϕAK
)
fn (0)− fn (pt)

)
−
∑
l∈Et

λ (E−n,lt + enlt)

(
fn

(
1

2

)
− fn (pt)

)
+ (ρ+ η) fn (pt)

}
. (B.5)

We now compare the value to the researcher of investigating a current topic along with the other
N − 1 researchers versus abandoning it to research a new one by himself. Both choices incur the
effort cost κ, and therefore it is irrelevant. Similarly, new information about the current topic will
arrive regardless, so it is irrelevant as well. As shown in the proof of Proposition 1, researchers are
indifferent to investigating in the same or in different fields. We assume they all investigate in the
same field without loss.

Researcher n will consequently pursue the active topic if

(γϕXN + λ (N − 1)) fn (pt)− λN
(
pt2

−γϕXe−γϕAK + (1− pt) e
γϕAK

)
fn (0) ≥ −λf

(
1

2

)
.

(B.6)
It follows from equation (B.6) that there is a critical pt, p∗, at which an active topic will be abandoned
if pt ≤ p∗.

Consequently, assuming conducting research to not is always optimal, we have two regions for the
Hamilton-Jacobi-Bellman Equation. For pt ≥ p∗, the Hamilton-Jacobi-Bellman Equation from
(B.5) in the research region is

(ρ+ η + γϕXN + λN) fn (pt) = eκ + λN
(
pt2

−γϕXe−γϕAK + (1− pt) e
γϕAK

)
fn (0)

+
1

2
f ′′
n (pt)

(
pnt (1− pnt)

σ

)2

, (B.7)

and in the investigate region when pt < p∗, which we designate as pt = 0, is

fn (0) =
eκ + λNfn

(
1
2

)
ρ+ η + λN

. (B.8)
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Substituting equation (B.8) into (B.7), we arrive at

(ρ+ η + γϕXN + λN) fn (pt) = eκ + λN
(
pt2

−γϕXe−γϕAK + (1− pt) e
γϕAK

) eκ + λNfn
(
1
2

)
ρ+ η + λN

+
1

2
f ′′
n (pt)

(
pnt (1− pnt)

σ

)2

. (B.9)

Notice that fn
(
1
2

)
in equation is a constant in (B.9).

Let us conjecture that fn (pt) is linear in pt, or

fn (pt) = a+ bpt.

Substituting this conjecture into equation (B.9)for pt = 1
2
, we have that

fn

(
1

2

)
=

1 + 1
2

(
2−γϕXe−γϕAK + eγϕAK

)
λN

ρ+η+λN

ρ+ η + γϕXN + λN − 1
2
λN (2−γϕXe−γϕAK + eγϕAK) λN

ρ+η+λN

eκ,

and

a =
eκ + λNeγϕAK

ρ+ η + γϕXN + λN

eκ + λNfn
(
1
2

)
ρ+ η + λN

,

b =
λN

(
2−γϕXe−γϕAK − eγϕAK

)
ρ+ η + γϕXN + λN

eκ + λNfn
(
1
2

)
ρ+ η + λN

,

confirming the conjecture. Consequently, we have for pt ≥ p∗ that

fn (pt) =
1

ρ+ η + γϕXN + λN

eκ + λNfn
(
1
2

)
ρ+ η + λN

(
eκ + λNeγϕAK + λN

(
2−γϕXe−γϕAK − eγϕAK

)
pt
)

(B.10)

Substituting our expression for fn (pt) from equation (B.10) and (B.8) into condition (B.6) at the
critical p∗, i.e., when it holds with equality, we find

(ρ+ η + λ) fn (p
∗) = λf

(
1

2

)
+

eκ + λNfn
(
1
2

)
ρ+ η + λN

eκ (B.11)

from which follows that

p∗ =
eγϕAK − 1+γϕX/λ−1/N

ρ+η+λ
eκ − λ

ρ+η+λ
ρ+η+γϕXN+λN
ρ+η+γϕXN+2λN

(
1 + 1

2

(
2−γϕXe−γϕAK + eγϕAK

)
+ ρ+η

λN

)
eγϕAK − 2−γϕXe−γϕAK

.

(B.12)
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It is immediate from rewriting p∗ from equation (B.12) as

p∗ =
eγϕAK − 1+γϕX/λ−1/N

ρ+η+λ
eκ − λ

ρ+η+λ
ρ+η+γϕXN+λN
ρ+η+γϕXN+2λN

(
1 + eγϕAK + ρ+η

λN

)
eγϕAK − 2−γϕXe−γϕAK

,

+
λ

ρ+ η + λ

ρ+ η + γϕXN + λN

ρ+ η + γϕXN + 2λN

that p∗ is decreasing in ϕX .
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C Appendix C: Alternative Measure of Scientific Importance
In this appendix, we replicate the main analyses using an alternative proxy for the scientific
importance of a gene. Whereas the baseline measure relies on atheoretical genome-wide association
studies (GWAS) to capture the number of diseases associated with each gene, here we instead
employ data on differential gene expression. Differential expression refers to systematic differences
in the level of expression of a gene between diseased and healthy tissues. Because gene expression
regulates when, where, and how much a gene product is produced, changes in expression levels
provide molecular evidence of a gene’s potential biological relevance. This evidence is used in
biomedical research to identify candidate biomarkers, therapeutic targets, and gene signatures for
diagnostics (Rodriguez-Esteban and Jiang, 2017; Richardson et al., 2024).

The probability of disease-related expression for each human gene is obtained from North-
western University’s Find My Understudied Genes (FMUG) database (https://fmug.amaral.
northwestern.edu/). This probability captures the average likelihood that a gene is expressed
in human disease contexts, based on pooled evidence from high-throughput transcriptomic studies.
Differential expression data have been widely used to prioritize genetic targets in pharmaceutical
and clinical research, even though not all expression changes translate into consequential biological
activity (Stoeger et al., 2018). Importantly, the FMUG measure offers a complementary dimension
of biological evidence, independent of publication activity, making it suitable as an alternative
indicator of ex ante scientific importance.

Using this proxy yields results that are consistent with the main analysis. Panel (a) of Figure
C1 plots the probability of disease expression for each gene, ordered by the cumulative number
of publications. The figure shows that the genes most frequently studied in the literature are not
necessarily those with the highest probability of differential expression in human disease. Panel
(b) of Figure C1 replicates the main binscatter analysis, underscoring that papers focusing on genes
with higher disease expression are only weakly associated with higher citation counts. By contrast,
the strongest predictor of citations remains whether the gene is already heavily studied, reinforcing
the evidence of a systematic citation penalty for less-studied genes.

Table C1 presents regression estimates that replicate the main specifications. Across all models,
papers on less-studied genes continue to receive significantly fewer citations, even after controlling
for the gene’s probability of differential expression. The coefficient on scientific importance is
positive and significant, but the magnitude of the citation penalty for understudied genes remains
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large. These findings confirm that the misalignment between citation incentives and scientific
importance is not specific to the GWAS-based measure but is robust to an alternative proxy rooted
in gene expression biology. Taken together, the results in this appendix strengthen the conclusion
that the observed citation penalty does not reflect underlying differences in biological importance.
Instead, it reflects the crowding of attention onto a narrow set of already popular genes, consistent
with the mechanism highlighted in the main text.

Table C1: Citation Penalty to Papers Focusing on Less Studied Genes.

(1) Citations (2) Citations (3) Citations (4) Citations
Inverse Study Rank -.0121∗∗∗ -.00919∗∗∗

(.000537) (.00087)

Understudied (0/1) -.262∗∗∗ -.156∗∗∗
(.0161) (.0257)

Scientific Importance .401∗∗∗ .358∗∗ .465∗∗∗ .409∗∗∗
(.0733) (.111) (.0732) (.111)

Journal-Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE No Yes No Yes
N 790,650 604,906 790,650 604,906

Note: †, *, **,*** denote significance at the 10%, 5%, 1%, and 0.1% level, respectively. Cross-sectional
OLS regressions at the publication level. Robust std. err. in parentheses. Citations: average yearly
scientific citations received by the publication; Inverse Study Rank: percentile rank of the gene by
amount of prior research, reversed so that 100 = least studied and 0 = most studied; Understudied: 0/1 =
1 for protein-coding human genes with a below-median number of publications; Scientific Importance:
probability of expression of the gene in human diseases, using data from Northwestern University’s Find
My Understudied Genes (FMUG); Journal-Year FE: fixed effect for articles published in a scientific
journal in a given year; Disease Class FE: fixed effect for disease codes from the MeSH tree; Principal
Investigator FE: fixed effect for the last author of the article, usually denoting the PI of the project. See
text for details.
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Figure C1: Robustness of the Main Analyses Using Differential Disease Expression of Genes as
an Alternative Metric of Scientific Importance.

(a) Probability of Disease Expression for Each Gene

(b) Relationship Between a Paper’s Citations and the Disease Expression of the Gene Studied

Note: The figure replicates the main results using an alternative proxy of scientific importance. Panel (a) shows the
probability that a gene is expressed in a human disease on the Y axis, with genes on the X axis sorted from the most
to the least studied. Genes on the X axis are sorted like in Figure 1. Panel (b) plots the relationship between yearly
citations received by a publication and the biological importance of the gene it studies, proxied by the probability of
being expressed in a human disease. The plot is presented as a binned scatterplot. To construct this binned scatterplot,
we residualize yearly citations and biological importance with respect to an indicator for each journal-year bin. We
divide the sample into 20 equal-sized groups based on the ventiles of the biological importance measure and plot the
mean of yearly cites against the mean of importance in each bin. The sample is the full analysis sample as defined in
the text. See text for details.
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D Additional Analysis and Robustness Checks

Figure D1: Genes Presenting Mutations Associated with More Human Diseases Receive More
Publications on Average.

Note: This figure plots the relationship between the total number of papers received by a publication and
the biological importance of the gene it studies. The importance of a gene is proxied by the number of
diseases associated with it in unbiased GWAS studies. The plot is presented as a binned scatterplot. To
construct this binned scatterplot, we residualize yearly citations and biological importance with respect
to an indicator for each journal-year bin. We divide the sample into 20 equal-sized groups based on
the ventiles of the biological importance measure and plot the mean of yearly cites against the mean of
importance in each bin. The sample is the full analysis sample as defined in the text. See text for details.
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Table D1: Alternative Definitions of Senior Authors.

(1) Inverse Study Rank (2) Inverse Study Rank (3) Inverse Study Rank (4) Inverse Study Rank
Seniority definition: ≥ 8 years ≥ 9 years ≥ 10 years ≥ 11 years
Senior Author (0/1) 0.299752∗ 0.320932∗ 0.231893† 0.195456†

(0.147457) (0.130743) (0.118351) (0.107484)

Scientific Importance Yes Yes Yes Yes
Journal Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE Yes Yes Yes Yes
N 604906 604906 604906 604906

Note: †, *, **,*** denote significance at the 10%, 5%, 1%, and 0.1% level, respectively. Cross-sectional
OLS regressions at the publication level. Robust std. err. in parentheses. Inverse Study Rank: percentile
rank of the gene by amount of prior research, reversed so that 100 = least studied and 0 = most studied;
Senior Author: 0/1 = 1 if the last author of the publication has been active in publishing for at least a
certain number of years (as indicated in the column heading); Scientific Importance: count of diseases
linked to mutations in the gene, as identified by unbiased genome-wide association studies (GWAS);
Journal-Year FE: fixed effect for articles published in a scientific journal in a given year; Disease Class
FE: fixed effect for disease codes from the MeSH tree; Principal Investigator FE: fixed effect for the
last author of the article, usually denoting the PI of the project. See text for details.
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Figure D2: Clinical Research Prioritizes Well-Studied Genes, While Corporate Innovation Does
Not.

(a) Clinical Citations to a Publication and Importance of the Gene Studied

(b) Patent Citations to a Publication and Importance of the Gene Studied

Note: This figure plots the relationship between yearly citations from clinical studies (panel (a)) and USPTO patents
(panel (b)) received by a publication and the biological importance of the gene it studies. The importance of a gene
is proxied by the number of diseases associated with it in unbiased GWAS studies. The plot is presented as a binned
scatterplot. To construct this binned scatterplot, we residualize yearly citations and biological importance with respect
to an indicator for each journal-year bin. We divide the sample into 20 equal-sized groups based on the ventiles of
the biological importance measure and plot the mean of yearly cites against the mean of importance in each bin. The
sample is the full analysis sample as defined in the text. See text for details.
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Table D2: Robustness to the Inclusion of Publications Focusing on Multiple Genes.

Panel A: Main Regression

(1) Citations (2) Citations (3) Citations (4) Citations
Inverse Study Rank (average) -.00958∗∗∗ -.00956∗∗∗

(.000673) (.000679)

Understudied (share) -.177∗∗∗ -.175∗∗∗
(.0203) (.0203)

Scientific Importance (average) .0000486 .0000889
(.000149) (.000148)

Journal Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE Yes Yes Yes Yes
N 1036692 1036692 1036692 1036692

Panel B: Instrumental Variable

(1) Inverse Study Rank (2) Citations (3) Understudied (0/1) (4) Citations
Mouse Homolog (share) -.808∗∗∗ -.0369∗∗∗

(.0696) (.00223)

Inverse Study Rank (average) -.149∗∗∗

(.0363)

Understudied (share) -3.26∗∗∗
(.772)

F-Statistic (First Stage) 134.892 274.487

Scientific Importance (average) Yes Yes Yes Yes
Journal Year FE Yes Yes Yes Yes
Disease Class FE Yes Yes Yes Yes
Principal Investigator FE Yes Yes Yes Yes
N 1,036,692 1,036,692 1,036,692 1,036,692

Note: †, *, **,*** denote significance at the 10%, 5%, 1%, and 0.1% level, respectively. Cross-sectional
OLS regressions at the publication level including also articles focusing on multiple genes. Robust std.
err. in parentheses. Citations: average yearly scientific citations received by the publication; Inverse
Study Rank (average): average percentile rank of the genes studied by amount of prior research, reversed
so that 100 = least studied and 0 = most studied; Understudied (share): share of genes studied with a
below-median number of publications; Mouse Homolog (share): share of gene studied with a homolog
gene in the mouse, which allows them to be studied using the laboratory mouse; Scientific Importance
(average): average count of diseases linked to mutations in the genes studied, as identified by unbiased
genome-wide association studies (GWAS); Journal-Year FE: fixed effect for articles published in a
scientific journal in a given year; Disease Class FE: fixed effect for disease codes from the MeSH tree;
Principal Investigator FE: fixed effect for the last author of the article, usually denoting the PI of the
project. Panel B reports the Kleibergen-Paap F statistic for the first-stage regression. See text for details.
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