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Abstract

Big data are increasingly used to make predictions about the value of uncertain investments, thereby
helping firms identify innovation opportunities without the need for domain knowledge. This trend
has raised questions about which firms will primarily benefit from the availability of these data-
driven predictions. Contrary to existing research suggesting that data-driven predictions level the
playing field for firms lacking domain knowledge, I argue—using a simple theoretical framework—
that these predictions reinforce the competitive advantage of firms with domain knowledge. In
high-stakes contexts like innovation, where returns are skewed and only a few leads can be pursued,
domain knowledge helps evaluate predictions and avoid false positives. I test this idea using novel
data on the pharmaceutical industry, exploiting the features of genome-wide association studies
(GWADS) that provide data-driven predictions about new drug targets. The results show that GWAS
stimulate corporate investments in innovation, yet around one-third of these efforts are misallocated
toward false positive predictions. Companies lacking domain knowledge react more strongly but
are disproportionally likely to fall into the trap of false positives. Instead, domain knowledge helps
firms pursue fewer alternatives that are more likely to be the best opportunities. Together, the results
show that even if data-driven predictions are valuable in innovation, domain knowledge remains a
crucial source of competitive advantage in the age of big data technologies.
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1 Introduction

The data revolution is transforming how companies operate, with firms increasingly using machine
learning and artificial intelligence (Al) to analyze large amounts of data and make predictions about
future events or uncertain choices (Brynjolfsson and McElheran, 2016; Brynjolfsson et al., 2021;
Cockburn et al., 2019). Beyond their use in informing operational decisions, data-driven approaches
are becoming common when making strategic decisions in high-risk contexts such as innovation or
entrepreneurship (Agrawal et al., 2018b). For instance, venture capitalists use predictive algorithms
to identify successful start-ups (Bhatia and Dushnitsky, 2023), consumer goods corporations rely on
social media data to forecast the revenues of prospective products (Allen and McDonald, 2024), and
pharmaceutical firms try to predict the therapeutic properties of millions of potential drugs (Heaven,
2023; Lou and Wu, 2021). In both traditional and high-tech sectors, data-driven predictions are

reshaping how firms find innovation opportunities.

Given the prevalence of this phenomenon, a central question is how predictive technologies affect
competitive dynamics. Traditionally, scholars have argued that domain knowledge allows firms to
foresee the value of alternative choices and better recognize opportunities, thus enhancing performance
(Cohen and Levinthal, 1990; Gruber et al., 2008; Shane, 2000). However, data-driven predictions can
serve the same role without the need for domain knowledge (Arora and Fosfuri, 2005; Agrawal et al.,
2024; Balasubramanian et al., 2022; Kim, 2024b). Since obtaining predictions is now cheaper and
faster than accumulating expertise, performance gains should favor those lacking domain knowledge.
While we still lack direct evidence at the firm level, recent research at the individual level would support
this idea: predictive technologies help mostly novices, hence substituting for their lack of knowledge
(Brynjolfsson et al., 2024; Dell’Acqua et al., 2023; Noy and Zhang, 2023). It is thus plausible to
expect a similar democratization effect when extrapolating this logic to firm innovation. Data-driven
predictions might erode the role of domain knowledge as a source of competitive advantage, leveling

the playing field through what some have hailed as the “death of theory” (Anderson, 2008).

Even though these arguments suggest that domain knowledge might no longer be necessary in the
age of big data, there are reasons to think otherwise. While the limited existing evidence does show
that data-driven predictions can yield significant competitive gains (Conti et al., 2024; Kao, 2023),
even data-driven predictions that are valuable on average can mask several false positive findings
(Berman and Van den Bulte, 2022). When validating predictions is relatively inexpensive, such as
in operational decisions, firms can afford a trial and error approach to experimentally learn which
ones unlock performance improvements (Koning et al., 2022). However, this logic might not extend
to innovative contexts, where testing a prediction is costly and the distribution of innovation returns

is highly skewed. Financial and organizational constraints preclude the firm from implementing



every prediction, and betting on the wrong ones can dramatically hurt performance and dynamically
foreclose other courses of action (Eggers, 2012; Gans et al., 2019). These features of the innovation

process imply that achieving gains from predictive technologies poses unique challenges.

Motivated by this logic, I argue that domain knowledge complements data-driven predictions in
the context of innovation. While it is true that predictions can identify opportunities without requiring
comprehension, domain knowledge becomes essential in judging their plausibility to rule out false
positives (Agrawal et al., 2018a; Allen and Choudhury, 2022; Arora and Gambardella, 1994b). 1
suggest that this can be visualized as a two-stage process: predictive algorithms generate a shortlist of
potential opportunities, while domain knowledge is used to evaluate them and funnel resources to the
most promising ones. This simple framework clarifies how the same data-driven predictions can have
heterogeneous performance implications among firms depending on their domain knowledge. Firms
without expertise in the domain will rely more on data-driven predictions to guide their investments;
however, such firms will be less likely to uncover actual opportunities in the data despite pursuing a
larger number of predictions. Acknowledging the consequences of false positives implies the opposite
of what existing research would suggest: data-driven predictions in innovation reinforce the advantage

of incumbents with the domain knowledge to evaluate them rather than help novices catch up.

The validity of my theoretical framework is ultimately an empirical question. However, assess-
ing how data-driven predictions and domain knowledge interact in shaping innovation performance
presents several empirical issues. First, it requires observing the risk set of potential opportunities that
firms could pursue, which is usually difficult to ascertain. Furthermore, this measurement challenge
is compounded by the inherent impossibility of learning the actual value of any counterfactual invest-
ments that were not made. Second, there also needs to be some way of knowing which specific data
predictions were available at the time of decision-making and how they aligned with any given firm’s
knowledge. The last challenge presents a crucial identification issue: if the quality of data-driven
predictions correlates with firms’ domain knowledge, then it becomes impossible to distinguish the

prediction’s quality from the ability to evaluate it correctly.

I address these challenges by focusing on the setting of pharmaceutical innovation, a field whose
empirical features are ideally suited for this paper. The drug development process is a lengthy and
costly endeavor, starting with the challenging task of identifying genes that can act as drug targets.
The recent emergence of genomics has enabled a new approach to locate the genetic roots of human
diseases, called genome-wide association studies (GWAS). GWAS are studies that compare large
genomic databases of individuals with and without a specific disease to identify genetic mutations
correlated with the presence of a disease. In practice, they yield predictions on the value of genes

as drug targets, bypassing the need to comprehend the gene’s role in the disease. This allows me



to explore how pharmaceutical firms react to the arrival of data-driven predictions that inform their
selection of genetic targets. I use patent applications as an indicator of early-stage investments and the

discovery of new drugs to measure successful downstream outcomes following a GWAS.

To identify the causal role of data-driven predictions, I exploit three unique features of GWAS.
First, these studies scan the entire genome and do not target specific genes ex-ante, ensuring that
any correlation between genes and the disease of interest is not the result of endogenous selection
by the researcher (Uffelmann et al., 2021). Second, GWAS are primarily conducted by academic
researchers, who make their findings publicly available to every firm. New gene-disease associations
are usually not anticipated by researchers and especially not by firms, who only learn about them once
published in scientific journals. Third, GWAS uncover both breakthrough opportunities and false
positive genetic targets. To separate them, I exploit the fact that diseases are often subject to multiple
GWAS of increasing statistical power over time (Marigorta et al., 2018). Subsequent GWAS provide
an intuitive way to identify findings that are not robust to replications, revealing that they were likely

false positives that firms should have avoided.

This setting allows me to test how firms leverage data-driven predictions. However, the average
GWAS study in my data introduces 14 new gene-disease associations, of which 12 are false positives.
This presents a challenge because one cannot link investments to individual predictions within the
same publication using conventional measurements, such as patent-to-paper citations. To overcome
this challenge, I adopt a novel text-based approach to extract the specific associations targeted in each
patent and map them onto an empirical landscape of all possible gene-disease combinations. This
approach enables me to track firms’ investments over the search landscape before and after the arrival of
data-driven GWAS findings while bypassing the use of patent citations. Then, I use firms’ publications
to measure the genes researched before GWAS’ arrival. As confirmed in my interviews, firms with an
active research program on any given gene can leverage this knowledge to assess GWAS findings even
if the genetic expertise was developed for another disease (Cattani, 2005). This allows me to study the

impact of data-driven predictions separately for firms with and without domain knowledge.

I find that the average number of patent applications for innovations targeting a gene-disease
combination more than doubles after a GWAS reports it. Event study specifications confirm the absence
of pre-trends and the validity of the research design. However, I also find that over a third of patent
applications are directed to pursuing false positive findings. Investments based on these false positives
fail to yield downstream outcomes such as highly cited patents or new drug molecules, highlighting that
pursuing false positive investments is a misallocation of firm resources. Next, [ explore the interaction
between firms’ domain knowledge and the impact of data-driven predictions. The results indicate that

firms lacking domain knowledge react more strongly after a GWAS is published. However, they are



disproportionally likely to select false positive findings in their innovation efforts. In contrast, firms
with domain knowledge exhibit a more discerning approach, making fewer investments that target
the most promising opportunities in the data. While both commission (type 1) and omission (type
IT) errors decrease, firms with domain knowledge seem relatively more effective in ruling out low

potential gene-disease associations rather than ruling in the very best ones in the data.

I further investigate these findings with a firm-level research design. In particular, I leverage
within-firm heterogeneity in genetic expertise resulting from their past research choices. While these
analyses are descriptive in nature, this alternative design allows me to control for tighter firm and
firm-by-disease fixed effects. The analysis confirms that genetic knowledge enables firms to become
more efficient and targeted in their investments. To explore the mechanisms underlying my results, I
categorize the specific nature of firms’ domain knowledge. Regression results show that the ability
to avoid false positives without committing resources to test them does not automatically stem from
experience; instead, it seems to reflect the capacity to translate theoretical scientific principles into the
evaluation of GWAS associations. Additional tests rule out social connections with scientists, generic
organizational capabilities, or different firm-level strategies as potential alternative mechanisms. Taken
together, these findings provide intriguing evidence that the ability of firms to assess data-driven

predictions derives from understanding the mechanisms of what makes an opportunity valuable.

This paper makes several contributions. First, it contributes to a developing research agenda on
how predictive tools like Al will shape innovation (Agrawal et al., 2024; Allen and McDonald, 2024;
Bessen et al., 2022; Cockburn et al., 2019) and their limits (Cao et al., 2024; Hoelzemann et al.,
2024; Kim, 2024b). By shedding light on the implications of false positive predictions, my results
show the importance of looking beyond the average effects of predictive technologies to understand
better what complementary assets will shape firm-level heterogeneity (Conti et al., 2024; Kao, 2023;
Krakowski et al., 2023). In particular, my framework highlights how domain knowledge can be a
critical determinant of who benefits from data-driven predictions in innovation (Agrawal et al., 2018a;
Allen and Choudhury, 2022; Toner-Rodgers, 2024). Relative to research showing a democratizing
effect of data availability (Galdon-Sanchez et al., 2024; Jin and McElheran, 2024; Nagaraj, 2022),
accounting for false positives implies a complementarity with domain knowledge that reinforces
incumbents’ advantage. Greater attention to the mechanisms and boundary conditions of data-driven
innovation may provide insights into why the promise of big data seems slow to materialize in the

context of innovation (Brynjolfsson et al., 2021; Lou and Wu, 2021).

Moreover, this paper contributes to the literature on firm capabilities (Cattani, 2005; Gambardella,
1992; Nelson and Winter, 1982) and their interaction with predictive technologies (Balasubramanian

et al., 2022). Using a new empirical approach to map firms’ investments onto an empirical search



landscape, I show the continuing importance of absorptive capacity, defined as the use of domain
knowledge to both recognize and exploit opportunities (Cohen and Levinthal, 1990, 1994). My results
suggest that recognizing opportunities, in particular, becomes more important in a world awash with
data-driven leads (Knudsen and Levinthal, 2007), thus changing the relative importance of the two
sides of absorptive capacity (Arora and Gambardella, 1994b). The paper also relates to the theory-
based view in management (Camuffo et al., 2024; Felin and Zenger, 2017), since separating the wheat
from the chaff in the data is the purview of firms with a better grasp of theoretical principles. Lastly, the
paper builds on research about using predictive tools in hiring, marketing, and other firm operations
(Hoffman et al., 2018; Kim, 2024a). I extend this line of work to technological innovation, where

domain knowledge is pivotal due to the many false positives and the higher testing costs.

The paper proceeds as follows. Section 2 introduces the theoretical framework. Section 3 presents
the drug discovery setting, the measurement strategy, and the data. Section 4 discusses the research

design. Section 5 reports the results, while Section 6 explores mechanisms. Section 7 concludes.

2 Theoretical Framework

Survey evidence shows that most U.S. firms use predictive tools, even in traditional sectors like
manufacturing (Brynjolfsson et al., 2021). Yet, little is known about their impact on innovation, which
entails searching for opportunities in complex technological spaces. This section addresses this gap
by theorizing about the mechanisms through which data-driven predictions change innovation, as well

as which firms benefit from them.

2.1 Innovation as a Prediction Problem

A firm’s ability to find opportunities is critical to its performance. This is especially true in the
innovation process, often depicted as searching for novel combinations of technological components
(Fleming, 2001; Kang, 2024; Katila and Ahuja, 2002; Nelson and Winter, 1982). Since technological
landscapes are generally too vast to experiment with all the potential combinations, firms have to
evaluate potential investments to allocate their limited resources (Arora and Fosfuri, 2005; Krieger
et al., 2023). This means that they do not search at random but rather in areas where they expect the
highest returns (Arora and Gambardella, 1994a; Fleming and Sorenson, 2004; Kneeland et al., 2020).
In practice, the innovation search process can be seen as akin to a prediction problem: firms try to
predict which technological combinations are most valuable and allocate their resources accordingly.

Firms that can better prioritize valuable projects will thus enjoy a competitive advantage.

But what is the source of superior predictive capabilities in innovation? A large body of work

has documented how domain knowledge enables scientists and entrepreneurs to foresee opportunities



(Chatterji et al., 2023; Li, 2017; Gruber et al., 2008; Shane, 2000). Knowledge in any given domain
permits decision-makers to understand the underlying mechanisms and principles behind what makes
an opportunity valuable (Felin and Zenger, 2017), allowing them to recognize value ahead of the
competition (Agarwal et al., 2023; Camuffo et al., 2024; Gavetti and Levinthal, 2000). The same logic
applies at the firm level, with deeper domain knowledge as a key determinant of absorptive capacity
(Arora and Gambardella, 1994b; Cohen and Levinthal, 1990). For example, discovering a new drug
involves searching in a chemical space of ~ 10%° molecules, far too vast to test all possible options.
Therefore, pharmaceutical firms traditionally leveraged chemical and pharmacological knowledge
from internal research (Gambardella, 1992) and academic collaborations (Cockburn and Henderson,

1998) to invest in the leads expected to be more promising.

Against this backdrop, the recent availability of big data and predictive technologies! offers an
alternative way to make predictions about risky choices (Agrawal et al., 2018b; Brynjolfsson and
McElheran, 2016; Lou and Wu, 2021). Data on past successful combinations can be analyzed to find
patterns that help assess the viability of potential investments (Kim, 2024b), thus enabling firms to
perform a triage before committing any actual resource (Kao, 2023; Nagaraj, 2022). The advantage
is that data-driven predictions are not confined to technological components that are theoretically
characterized or of known function (Cockburn et al., 2019; Toner-Rodgers, 2024; Tranchero, 2024).
Instead, algorithms can identify association patterns between variables that are useful in making
predictions even if the underlying mechanisms for success are unknown to the innovator. The result
is an effectively theory-free approach to prioritizing search in vast technological landscapes for which

data are available (Agrawal et al., 2024).

Predictive technologies fundamentally reshape the source of predictions used to identify oppor-
tunities, with data-driven predictions forming the basis for innovation decisions instead of domain
expertise. This change has potentially important implications for strategy and competitive dynamics.
Firms may stop investing in domain knowledge since data-driven predictions could be a cheaper and
more fungible substitute (Balasubramanian et al., 2022; Cohen and Levinthal, 1994; Puranam, 2019).
This could result in what the popular press has called the death of theory (Anderson, 2008; Schmidt,
2023), potentially eroding the role of domain knowledge in innovation. On the other hand, however, it
could result in the democratization of competition: new entrants could use data-driven predictions to
disrupt incumbents that have traditionally relied on large knowledge bases to maintain their competi-

tive edge. In summary, the rise of predictive technologies raises the question of how they will shape

1T define predictive technologies as algorithms designed to use large amounts of data to make predictive statements about

options of unknown value (Brynjolfsson et al., 2021). This includes tools of varying levels of sophistication, from simple
correlations to deep learning and AI (Kim, 2024b). However, data-driven predictions are conceptually different from
descriptive uses of data analytics (Berman and Israeli, 2022).



innovation and who will benefit most from these trends.

2.2 The Impact of Data-Driven Predictions on Innovation

Conceptualizing innovation as a prediction problem is useful to visualize how data technologies affect
the search process: by shaping how firms find potentially more promising technological combina-
tions. However, the value of such data-driven predictions depends on the nature of the innovation
problem. In contexts where the investment required to validate a prediction is relatively low, parallel
experimentation and trial and error are viable approaches. For instance, A/B testing is effective in
guiding the search for product specifications in software companies (Koning et al., 2022). On the
other hand, when it comes to research and development (R&D) in traditional sectors, most choices do
not share these features (Camuffo et al., 2024; Gans et al., 2019). Discovering the ground truth state
of novel technological combinations can be very costly and may dynamically foreclose other paths
(Adner and Levinthal, 2024). Therefore, data-driven predictions enable the possibility of large-scale

“offline” learning, i.e., before incurring the costs of testing (Gavetti and Levinthal, 2000).

Data-driven predictions are best intended as noisy and imperfect signals even when informative
on average (Agrawal et al., 2018b; Arora and Fosfuri, 2005). This is likely magnified in technological
search, where the precision of predictive tools is lower due to the complexity of the prediction task and
the scarcity of training data (Camuffo et al., 2023; Choudhury et al., 2020; Kim, 2024b). Nonetheless,
there are good reasons to expect that even imprecise data-driven predictions can largely affect the
willingness to invest in a given project. Firms are likely to hold uninformative priors on large swaths
of the search landscape, meaning that predictions can have a significant “surprise effect” that sways
their posterior beliefs (Camuffo et al., 2024; Harrison and March, 1984). When the probability of
success is extremely low ex-ante, as in technological innovation, such signals help de-risk investment
choices (Ewens et al., 2018; Nagaraj, 2022).

But what about the downstream innovation outcomes resulting from those investments? Studies
showing the benefits of predictive tools tend to focus on tasks where predictions can be quite accurate,
such as in board games or resume screening (Choi et al., 2024; Hoffman et al., 2018). However,
when applied to technological innovation, data-driven predictions frequently conceal false positives
(Berman and Van den Bulte, 2022). Components interact in complex ways, meaning that associations
between variables are often spurious (Tranchero, 2024). Furthermore, returns from innovation are
extremely skewed (Fleming and Sorenson, 2001). When technologies require sizable investments and
take years to mature, such as in deep tech or drug discovery, the price of a mistake far outweighs
any positive spillovers from learning (Eggers, 2012). Together, this reasoning leads to the following

baseline hypothesis:



Hypothesis 1: Data-driven predictions stimulate firm investments in innovation, but only true positive

predictions lead to better firm innovation outcomes

The preceding discussion clarifies an important and often overlooked feature of predictive tech-
nologies: while extrapolating leads from past data is increasingly cheap, this does not change the other
features of the innovation search process. In particular, firms remain limited in the resources they
can allocate to validate and develop ideas. Whether a firm can gain a competitive advantage from

data-driven predictions will thus crucially hinge on its ability to avoid false positives.

2.3 Data-Driven Predictions and Domain Knowledge: A Simple Conceptual
Framework

The earlier discussion focused on the aggregate effects of a data-driven innovation process. Yet, a
crucial question for management is which kinds of firms benefit more from the diffusion of big data
technologies. The existing results are ambiguous. Some research has found that new entrants and
small firms can use data to recognize opportunities ahead of experienced competitors (Conti et al.,
2024; Galdon-Sanchez et al., 2024; Nagaraj, 2022), while others have reached the opposite conclusion
(Kao, 2023; Otis et al., 2024).2 These conflicting results are puzzling if one thinks of data-driven
predictions as reducing the cost of locating opportunities, which would imply that they substitute
domain knowledge and benefit smaller and inexperienced firms. The difficulty in reconciling existing
evidence points to the need for a new conceptual framework to understand the competitive effects of

predictive technologies.

The presence of false positives among data-driven predictions suggests the need to separate the
quantitative increase in investments responding to those leads from the actual innovation outcomes
(Conti et al., 2014). Starting with the former, past evidence suggests that inexperienced firms rely
comparatively more on data to find opportunities (Conti et al., 2024; Furman et al., 2021). New
entrants and smaller firms, which are more likely to lack domain knowledge, tend to face higher
cognitive (Galdon-Sanchez et al., 2024) and investment costs (Nagaraj, 2022). Insofar lower domain
knowledge translates into weaker priors about the potential of an opportunity, data-driven signals will
greatly change investment behaviors (Chavda et al., 2024). Instead, domain experts can more easily
form accurate predictions of a project’s feasibility and potential (Lane et al., 2022a; Li, 2017). Firms
with greater in-house expertise thus need to rely proportionally less on external information to find and
recognize promising leads (Arora and Gambardella, 1994b; Cohen et al., 2002). In sum, one would

expect the following:

2Most research in this area has not investigated the mechanisms behind the effects documented, further increasing the
ambiguity of existing results. A recent exception is the work by Conti et al. (2024), who highlighted how small firms
seem to leverage big data to develop innovations while big firms use them to achieve cost efficiencies.



Hypothesis 2: After observing the same valuable but imprecise data-driven predictions, firms without

domain knowledge invest proportionally more than firms with domain knowledge

Nevertheless, the presence of false positives implies that investing based on data-driven predictions
is no guarantee of success. The challenge for firms is thus evaluating predictions and deciding how to
allocate their scarce resources (Agrawal et al., 2018a). This suggests that rather than being substituted
away, domain knowledge could become a complement in choosing between potential opportunities
in the data (Allen and Choudhury, 2022). One way to visualize this argument is through a two-
stage process. First, data-driven predictions provide a shortlist of technological combinations that
are valuable on average but too numerous to test individually. Then, domain knowledge helps firms
triage the perceived value of potential opportunities, thus channeling resources to the most promising
predictions. For instance, domain knowledge permits to understand the interdependencies between
technological components, allowing them to rule out implausible associations (Chatterji et al., 2023;
Fleming and Sorenson, 2004) or interpret data signals in light of existing theories (Agarwal et al.,
2023; Felin and Zenger, 2017).

This simple framework implies that firms with domain expertise will benefit more from data-
driven predictions. On the one hand, data-driven predictions might counteract organizational inertia
and uncover breakthroughs outside domains mastered by the firm, offsetting the proclivity of experts
to succumb to competency traps (Denrell and March, 2001; Levinthal and March, 1993). On the other
hand, domain experts tend to be more discerning and accurate when reacting to novel information
(Allen and Choudhury, 2022; Boudreau et al., 2016; Lane et al., 2022a). Instead, firms without the
knowledge to judge predictions will make commission (or type I) and omission (or type II) errors
simultaneously; said differently, they will mistakenly select low-value combinations at the expense of
true opportunities. Compared to firms with domain knowledge, those without it should be less likely to
find the best opportunities among data-driven predictions despite investing quantitatively more. This

argument can be synthesized as follows:

Hypothesis 3: After observing the same valuable but imprecise data-driven predictions, firms without

domain knowledge make proportionally more type I and Il errors than firms with domain knowledge

Overall, this simple theoretical framework offers insights into how domain knowledge interacts
with data-driven predictions. The emergence of predictive technologies changes the role of knowledge
in innovation, but not by rendering it obsolete, as some have argued (Anderson, 2008). In a world
where obtaining data-driven predictions is cheap, the source of competitive advantage shifts from
idea generation to filtering out false positive leads (Knudsen and Levinthal, 2007). Firms with robust

knowledge bases may thus continue to outperform in innovation, even if that knowledge was initially



developed for other purposes (Cattani, 2005; Cohen and Levinthal, 1994). The rest of the paper
tests whether the empirical evidence supports these implications in the context of pharmaceutical
innovation. In particular, I investigate which firms can benefit from data-driven predictions that

identify potential genetic targets for drug discovery.

3 Empirical Setting, Measurement Strategy, and Data
3.1 Drug Discovery and GWAS

The first crucial step in drug discovery is choosing the right genetic target: namely, firms must identify
genes that can be modulated by a drug to affect the outcomes of specific diseases (Nelson et al.,
2015).3 This task is complex because, in principle, each genetic disease could be caused by mutations
in any of the over 19,000 protein-coding human genes. Common diseases are often polygenic—for
instance, diabetes has been tied to over 150 DNA mutations. The result is a vast combinatorial space
of tens of millions of potential gene-disease combinations, of which only a minor fraction has actual
therapeutic value. Simply testing all of them is not feasible: firms can pursue only a limited number
of alternatives because developing a new drug takes 10-15 years and costs $2.6 billion on average
(Kao, 2023). Therefore, it is unsurprising that pharmaceutical firms often rely on university research

to reduce the risks involved in target selection (Arora and Gambardella, 1994a).

Starting from the early 2000s, the completion of the Human Genome Project and the steep decline
in the cost of collecting genetic data prompted the emergence of GWAS. GWAS are case-control
studies where researchers sequence human genomes to find genetic mutations that are more likely to
appear among subjects with a specific condition as compared to healthy subjects (Uffelmann et al.,
2021; Visscher et al., 2017). Figure 1 shows the abstract of one early GWAS and a stylized depiction
of how a typical study unfolds. Researchers start by collecting DNA samples from several subjects,
some affected by the disease of interest and some not. They then use microarrays to sequence DNA
locations (called markers) to reconstruct the genetic constitution (or genotype) of the subjects in the
sample. Lastly, they test for statistically significant differences in genotypes that correlate with the
presence of the disease.# Intuitively, by comparing the genetic makeup of people with and without a
condition, one can predict which genes might be involved in a given disease and thus serve as drug

targets (see Appendix A for more details).

3Genes are sequences of DNA bases that encode the “instructions” to synthesize gene products (e.g., proteins) that allow
the organism to function. When genes acquire mutations in their sequence, they might alter their behavior with significant
consequences for human health. Knowing the genetic roots of diseases is vital in designing pharmaceutical drugs because
genes that cause disease can be targeted for therapeutic purposes (see Appendix A for more details).

4Association tests are adjusted for multiple hypothesis testing, usually imposing a high threshold for statistical significance.
The results are often graphically represented as a “Manhattan plot” and show the p-value of multiple statistical tests between
DNAs in the case and control groups. The y-axis usually reports -log;o(p-value), and hence higher values correspond to
stronger associations. See Figure 1 for an example.
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GWAS provide data-driven leads into gene-disease combinations that can be valuable in R&D,
and anecdotal evidence points to several drugs developed thanks to GWAS findings (Visscher et al.,
2017). Nevertheless, there is still no consensus on the ability of GWAS to identify targets with high
therapeutic potential (Struck et al., 2018; Tam et al., 2019; Uffelmann et al., 2021). One major limi-
tation is that GWAS cannot explain the underlying mechanisms of gene-disease associations, raising
the possibility of false positives with no actionable causal pathway (Goldstein, 2009; Hermosilla and
Lemus, 2019). The average GWAS can find tens of potentially promising gene-disease associations,
many of which could be worthless or spurious. This challenges scientists and firms interested in thera-
peutic applications due to the high costs of following a data-driven lead.> As a result, questions remain
regarding how many GWAS associations are valuable and whether they generate useful knowledge for
drug discovery at all (Goldstein, 2009).

3.2 Measuring the Impact of GWAS with Text-Based Empirical Landscapes

For my empirical analysis, I need a precise method to measure which firms decide to invest in the
gene-disease associations uncovered by GWAS. Unfortunately, information on R&D spending is only
available from firms at an aggregate level (Cohen and Levinthal, 1990). To get at the project-specific
level of investment, I leverage the richness of patent data (Gambardella, 1992). Following Eggers and
Kaplan (2009), I use patent applications as an indicator of early-stage investments in a given domain.
This is well-suited to my empirical setting since pharmaceutical firms usually apply for patents at the
beginning of the long therapeutic development process, before knowing whether the product patented
will be successful in the clinic. I then use the information on molecules entering the clinical trial

phase to measure the downstream outcomes of R&D investments.®

However, linking firm investments and outcomes to the gene-disease associations uncovered by
GWAS poses another measurement challenge. Traditional approaches relying on patent-to-paper
citations are not well-suited for this context. On the one hand, a typical GWAS identifies multiple
genes linked to a disease, yet it is unclear which are true positives among the false positives. Thus, it is
impossible to determine from a patent citation to the GWAS paper exactly which association the patent
is leveraging. On the other hand, using direct citations is ineffective for tracing the unpredictable path
between foundational basic research and innovation. For instance, patents might cite later research

that validates a particular GWAS association but neglect to mention the original GWAS because such

5This theme emerged prominently in my interviews with industry professionals: “I don’t think anyone who is doing good
science would just trust a GWAS, even an accurate GWAS, because R&D is so expensive” (Interview, 17 October 2022).

6Since I focus on the pre-clinical stage, patent applications are better thought of as a proxy for firm investments (Eggers
and Kaplan, 2009). Insofar as firms pay attention to the findings of GWAS and start investing based on them, we should
see more patent applications as a byproduct. Yet, only successful investments will reach the clinic, making the number
of drug molecules entering the clinical trial stage a proxy of innovation success conditional on upstream investments.
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discovery has become common knowledge in the field.

To address these challenges, I develop a novel measurement strategy (see Appendix B).” Taking
a recombinant view of innovation (Fleming, 2001), each GWAS association can be considered as
a prediction of a valuable gene-disease combination. This suggests that the innovation impact of a
GWAS is proxied by the change in firm patenting behavior for gene-disease pairs “treated” compared to
otherwise similar combinations that were not reported by the GWAS. Next, named entity recognition
algorithms can be used to extract the genes and diseases from the text of each patent application,
providing a method of inferring which gene-disease combinations a firm is targeting in its investments.
Figure 2 offers a representation of how the increase in patents targeting specific gene-disease pairs
captures the heterogeneous impact of individual GWAS associations. Assuming a standard parallel
trends assumption, the before-and-after changes in the number of patents mentioning treated and
control combinations provide an estimate of the GWAS’ effect. Notably, this approach permits me to

empirically study firms’ exploration decisions in a combinatorial landscape of genes and diseases.

This novel measurement approach offers three significant advantages over traditional citation-
based methods. First, employing text-based knowledge entities allows for distinguishing between the
impact of different contributions made in the same paper. Traditional citations lack such granularity
at the gene-disease level. Second, by tracking mentions of genes and diseases directly in the patent’s
text description, this approach is well suited to objectively capturing the impact of basic research
findings that might not be explicitly acknowledged in patent applications. Third, one can similarly
collect data on the gene and the disease targeted by the drugs tested in each clinical trial (Kang, 2024;
Kao, 2023). This allows me to similarly map drug discovery in the same gene-disease combination
landscape, and trace the innovation process from the initial investments to the outcomes. Appendix B
presents conceptual details of how this measurement strategy can be generalized to other applications,

bypassing the limitations of patent citations (Nagaraj and Tranchero, 2024).

3.3 Data Sources

To empirically test how firms respond to the arrival of data-driven predictions, three key ingredients
are required. First, I need data on new gene-disease associations identified by GWAS. Second, I need
information on firms’ domain knowledge, early-stage investment decisions, and drug development
outcomes. Third, I need to know the specific genes and diseases targeted by each GWAS, patent, and

drug in order to link them. Below I summarize the main data and how I collect these key elements

7Nagaraj (2022) uses a similar idea to assess the impact of satellite images on gold discovery at the level of individual
blocks of the earth. Kao (2023) adopts the same logic to study the effect of large-scale cancer maps on the number of
clinical trials on 627 genes. The approach detailed in Appendix B formalizes their intuition and expands it to additional
use cases, including quantifying science-to-technology spillovers without the limitations of citation data.
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(see Appendix C and D for details):

GWAS Catalog: To identify the data-driven predictions available to firms, I rely on the GWAS
Catalog, a manually curated source managed by the European Bioinformatics Institute (EBI) and the
National Human Genome Research Institute (NHGRI). The GWAS Catalog is a comprehensive list
of GWAS published in peer-reviewed journals, starting from the first one published in 2005. Studies
are eligible for inclusion in the GWAS Catalog if they include an array-based genome-wide scan that
does not target any specific gene ex-ante. The GWAS Catalog also collects the details of the findings
in the original study. In particular, each gene is identified by its NCBI Gene IDs, while diseases are
reported according to the Experimental Factor Ontology (EFO). I use the crosswalk available on the
EFO website to map diseases into the corresponding MeSH Unique IDs.8 My sample includes 17,965
gene-disease associations first reported by 1,259 distinct GWAS between 2005 and 2019 (Appendix

Figure D.1). These associations span 404 unique diseases and 5,080 protein-coding genes.

SciBite/EBI Patent Data: Through a partnership with EBI, I obtained proprietary data to measure
the gene-disease pairs mentioned in the text of each USPTO patent application (2001-2019).° The
data have been compiled from complete patent texts using TERMite (TERM identification, tagging,
and extraction), a named entity recognition software developed by the Elsevier-owned start-up SciBite.
TERMite directly maps the entities extracted into NCBI Gene IDs and MeSH Unique IDs. A manual
validation of 200 random patents finds that SciBite’s entity recognition algorithm has a precision
rate of 95%-97% and a recall rate of 91%-92% and is thus highly reliable. I merge these data
with information on assignees and patent characteristics taken from PatentsView. Commonly used
indicators of patent quality are from the OECD Patent Quality Indicators Database (Squicciarini et al.,
2013) and the data of Kogan et al. (2017). My final sample includes all pharmaceutical companies
applying for at least one USPTO patent between 2001 and 2019.

Cortellis Drug Data: I supplement my data with proprietary information on drug molecules
collected by the Clarivate Analytics Cortellis Competitive Intelligence Database (Krieger, 2021). For
this study, [ use the drug development records in Cortellis up to July 2020, which contain information for

over 70,000 drugs. Cortellis aggregates information from various sources to provide a comprehensive

8Since the MeSH taxonomy is a hierarchical tree, in my analysis I include all EFO diseases matched with MeSH IDs at
level four of the tree. If a more specific disease was matched (i.e., at level five or above), I assigned it to its parent branches
up to level four. Vice versa, if the disease matched was coarser (i.e., at level three or below), I assigned the finding to
all its descending level four branches. This procedure permits harmonizing the diseases targeted in GWAS at the same
level of specificity. The sample is further restricted to only diseases that receive more than one GWAS because I exploit
subsequent GWAS to code which gene-disease associations are not replicated and are thus likely to be false positives (as
explained in Section 3.4).

9Note that these are not gene patents, i.e., the exclusive rights to a specific sequence of DNA. Rather, they are patents for
genetic tests, method-of-use of molecules, or new drug molecules that target a specific gene to treat a given disease. See
Appendix C for details.
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list of historical development milestones for each drug molecule. I use data about new molecules
observed entering the earliest phases of drug development (what Cortellis records as the “discovery
phase” and the “pre-clinical phase”). For each drug, I match the genetic target to NCBI Gene IDs and

the condition addressed to the corresponding MeSH Unique IDs using string matching.

PubTator Central Publication Data: I use publicly available data from PubTator Central, which
provides computer-annotated genes and diseases for each paper published in PubMed. The PubTator
Central team maps genes and diseases to NCBI Gene IDs and MeSH Unique IDs. Next, I match each
patenting firm in my sample with their respective publication records using the information on authors’
affiliations. Doing this enables me to code which firms had prior knowledge of the biology of a specific
human gene before deciding whether to invest in a relevant GWAS finding. This procedure yields
a very granular measure of gene-specific expertise, an improvement over previous studies that used
corporate publications as a generic firm-level proxy for absorptive capacity. Additional bibliographic

characteristics of firms’ publications are from the National Institutes of Health’s iCite database.

Open Targets Score: Open Targets is a public-private partnership that collects all the available
evidence on the strength of gene-disease associations and summarizes it in a synthetic score. The
data can be downloaded from https://platform.opentargets.org/ (see also Appendix D.2).
Experts in the field consider Open Targets to provide the most comprehensive assessment of the genetic
roots of human diseases based on the available knowledge. I download the Open Targets scores and
merge them with my data. Once more, genes and diseases are already provided with NCBI Gene IDs
and MeSH IDs. The score is available for 594,353 gene-disease pairs (8% of my sample), spanning
17,437 genes and 366 diseases.

By putting together these data sources, I can trace an empirical search landscape that captures
all potential combinations of genes and diseases that pharmaceutical firms could select. Table 1
reports summary statistics at the gene-disease combination level, constituting the paper’s primary
unit of analysis.’® Around 21.8% of the 7,223,924 gene-disease pairs have received investments,
as proxied by their appearance in at least one patent application. Yet, only 0.19% of these pairs
have advanced to drug development stage, confirming the extremely skewed distribution of innovation
returns. GWAS have uncovered 17,965 new associations, constituting 0.25% of this vast combinatorial
landscape. The average gene-disease pair receives 0.13 patent applications per year. However, there
is a considerable variation, with some genetic targets receiving over 1,000 annual patents. Around
three-quarters of patents are filed by firms that have not previously published research on the targeted

gene. Descriptive evidence confirms that firms are more likely to target gene-disease combinations

1UMore precisely, each observation unit is a combination of NCBI Gene ID and MeSH Unique ID (at level four of the
MeSH tree).
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with higher therapeutic potential when previously researching the gene involved (Appendix D.3). This
pattern suggests that domain knowledge is related to the ability to focus investments on more promising

targets, even in a cross-section of my data (Nelson et al., 2015).

3.4 Identifying False Positive Associations

GWAS conduct an unbiased, atheoretical search for genetic mutations associated with human diseases.
This feature is both a strength and a weakness: despite very stringent statistical significance thresholds,
it is well-known that many GWAS findings turn out to be statistical noise or spurious correlations
(Goldstein, 2009). For this paper, I need to empirically measure which GWAS predictions prove to
be false. The main challenge is that ex-post direct assessments of gene-disease associations’ quality
are only available for findings that received investments, resulting in a classic missing data problem.
Specifically, researchers can only observe the ground truth value of the prediction when a decision
maker chooses to act on it (Hoffman et al., 2018). In my setting, this issue would make it impossible
to understand if GWAS associations that received little attention were correctly avoided due to low

potential or were mistakenly overlooked by firms failing to recognize their value.

To distinguish true positives from false positives, I exploit the fact that diseases are often subject
to multiple GWAS over time. In particular, I categorize gene-disease associations as true positives
only if they are initially reported by a GWAS and later confirmed by at least one subsequent GWAS
focusing on the same disease. This provides an intuitive way to identify likely false positives regardless
of the level of firm investment they received.!! Using this approach, I find that 84.3% of the 17,965
gene-disease associations in my sample fail subsequent replications using different samples.'? This
high number aligns with accounts from experts who have long warned about the risks posed by big
data in genomics (MacArthur, 2012). Non-replicable findings can lead to inefficient use of R&D
resources, misdirecting firms’ limited resources to targets without therapeutic potential (Freedman
et al., 2015).

I validate this measure of false positives through three methods. First, I compare my coding with

Put otherwise, the genome-wide design of subsequent GWAS replications serves as a retest for all findings, thereby
providing assessments even for associations that have not received investments from firms. Note also that this approach
provides a conservative metric of which findings are false positive in a therapeutic sense since even replicable associations
might not offer avenues for treatment (Goldstein, 2009; Hermosilla and Lemus, 2019).

2The low applicability of GWAS findings is well-known in the field (MacArthur, 2012). Marigorta et al. (2018) find that
around 40% of associations are replicable when including also findings in intergenic regions (i.e., non-protein coding).
The discrepancy with my analysis is mostly due to the fact that I focus on protein-coding regions because of their higher
relevance for drug development. One reason behind the lower replicability for findings related to protein-coding genes
is the frequent mistakes made by GWAS’ authors in mapping mutations into the correct corresponding genes (Visscher
et al., 2017). This type of mistake in reporting GWAS results provides an alternative empirical strategy that I leverage
in Subsection 5.3 as a robustness test.
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the Open Targets score to measure the ground truth value of each gene-disease pair.’*> Appendix
Table E.2 shows that replicable gene-disease associations are 114%—191% more likely to rank in
the top decile of the Open Targets score relative to non-replicable ones. Second, I investigate the
characteristics of the study design that predict which GWAS discoveries will replicate in subsequent
studies. The data in Appendix Table E.3 support the intuition that more robustly designed GWAS are
less likely to report associations classified as false positives. Finally, I present evidence in Appendix
Table E.4 to confirm that true positives are more likely to appear in articles that receive more citations
in clinical papers and a lower share of citations with a negative tone (Catalini et al., 2015), as captured
by the Scite data (Nicholson et al., 2021). Together, these tests corroborate the approach used to

identify false positives in GWAS associations.

4 Research Design

There are two main challenges to assessing the impact of data-driven predictions on innovation:
measurement and endogeneity. The first challenge arises from the difficulty of determining which
predictions a firm has access to. This becomes problematic when firms with domain knowledge obtain
systematically better predictions, thus conflating the prediction’s quality with the ability to interpret it.
The second challenge relates to identifying the causal effects of data-driven predictions. In practice,
firms are likely to mine for predictions where they expect the highest returns (e.g., for genes known to
be druggable), potentially leading to upwardly biased estimates. An ideal experiment would bypass
these issues by assigning all firms identical information on gene-disease associations. The causal
effect of data-driven predictions would then be evident from changes in patenting involving “treated”
gene-disease pairs relative to the others. Subsequently, I could then test my theoretical framework

with heterogeneity analyses by firms’ pre-existing domain knowledge.

I approximate this ideal experiment using the staggered publication of GWAS associations in
scientific journals. First, GWAS are mainly conducted by academic research teams,* and their
findings are publicly accessible upon publication. As such, their findings are available to every
pharmaceutical firm simultaneously and are not driven by unobservable proprietary data or expertise
that they might have. Second, GWAS scan for genetic variants across the whole genome (Uffelmann
et al., 2021). This method, by design, avoids the issue of endogenous sorting since it does not focus
on specific genes. GWAS discoveries are, therefore, entirely unforeseen by the research team and
even more so by firms that later read about the findings in journals. Importantly, unbeknownst to the

scientists conducting the GWAS, only some of their findings will be confirmed in future publications.

30ut of the 17,965 gene-disease associations in my data, there are 16,298 pairs with an Open Targets Score.
“In my sample, 324 GWAS are co-authored by corporate scientists, and another 117 of them acknowledge funding from
pharmaceutical firms. However, all my results are robust to the exclusion of those GWAS (Appendix Table E.9).
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This presents a unique opportunity to study how firms react to true and false positive associations and

how their responses vary based on domain knowledge.

I use OLS to estimate the following specification at the gene-disease-year level:

Yt = a+ BPosty x GWAS; j + YGD; j + 0, x Gene; + wy X Disease;j + €; 4, (1)

where Y; ;, is either a measure of investments or innovation outcomes by firms in year ¢ involving
gene 7 and disease j. In alternative specifications, Y; ;, is measured separately for firms with domain
knowledge (k = 1) and without it (k = 0). Post, x GW AS, ; equals one after the first GWAS reports a
gene-disease association and equals zero otherwise. G D, ; are fixed effects for the combination of gene
1 and disease j, which account for pair-specific differentials in research potential. I control for time-
varying disease-level differences in market size by including disease-year fixed effects (w; X Disease;).
Similarly, gene-specific time trends (J; x Gene;) consider the growth of interest in specific genes.
Estimates report standard errors clustered two-way by gene and disease.!> The coefficient of interest
B captures the change in Y} ; , for genes and diseases found correlated in early GWAS relative to those

reported later (or never within my sample period).

The main threat to identification is the potential sorting of data-driven predictions on gene-disease
pairs that would receive investments even without GWAS findings. However, I provide evidence that
this is not a concern in my context. First, GWAS are distinct from targeted scientific studies in that
they scan every human gene. The genome-wide nature of GWAS ensures that scientists there is no
gene-level selection conditional on the choice of disease to study (Appendix Figure E.1). Second, the
timing of the findings is plausibly exogenous to trends in the dependent variable. Indeed, the temporal
order in which gene-disease pairs are reported in a GWAS is not influenced by previous inventive
activity related to those pairs (Appendix Table E.1 and Figure E.2). In what follows, I exploit this
plausibly exogenous timing variation between genes within a disease to assess the causal effect of
GWAS on firms’ early-stage innovation investments. Directly testing for the absence of pre-trends in

the outcome variables will further confirm the validity of my identification strategy.

5 Results
5.1 Do GWAS Lead to More Innovation?

I begin by examining the aggregate impact of GWAS findings on pharmaceutical innovation. Given
their uncertain and debated reliability, it is unclear whether the publication of gene-disease associations

will increase firms’ willingness to invest in a gene-disease combination. Columns 1 and 2 of Table

5The precision of the results is robust to alternate methods of clustering standard errors, such as by gene, by disease, or
by gene-disease pairs.

17



2 present the baseline results, using patent applications as an indicator that a firm is investing in a
given gene-disease pair. The main finding is a positive impact of GWAS, amounting to an average
increase of 125% in patents filed. The design of GWAS should ensure that the effects reported are not
due to researchers endogenously targeting the most promising gene-disease pairs. Figure 3 directly
checks the validity of this assumption with an event study version of Equation 1. The plot confirms flat
pre-trends and a persistent effect after the GWAS is published, with the estimates stabilizing around
the value of the primary estimate of Table 2. Additional heterogeneity analyses in Appendix Table
E.5 reveal greater increases in patenting for associations that are statistically more robust or larger in

magnitude.

GWAS are known to harbor many false positive associations (MacArthur, 2012). In my sample,
84.3% of the associations involving a protein-coding gene fail to replicate in follow-up GWAS targeting
the same disease. The high incidence of misleading predictions would not be problematic if firms
could recognize and avoid them. Unfortunately, as shown in Columns 3 and 4 of Table 2, this is not
the case. The estimates imply that around 35% of the total increase in patent applications is directed
at non-replicable gene-disease associations. Nevertheless, GWAS findings that were later confirmed,
albeit a minority, mustered up to three times more investments than the average effect. This large
increase is likely compounded by firms initially investing in false positives and then pivoting away

after learning about their mistake.

A case study exemplifies these dynamics. Panel (a) of Figure 4 shows patenting activity for the
PLA2G7-myocardial infarction pair after it was reported in a GWAS by Suchindran et al. (2010). While
GlaxoSmithKline was already investigating this specific pair, the GWAS led to a spike in investments by
new firms. Unbeknownst to them, the finding would later fail to translate into therapeutic advances.¢ In
2014, GlaxoSmithKline announced the failure of two clinical trials for darapladib, a molecule targeting
PLA2GT7. This led other firms to redirect their investments toward alternative targets (Krieger, 2021).
The same dynamics can be seen in an event study regression where I keep only false positive GWAS
associations in the sample (Panel (b) of Figure 4). Patenting initially rises and then declines, most

likely when firms discover that the finding is not robust after costly investments.

The allocation of investments toward false positives hurts firm performance because only valid
associations yield successful innovation outcomes. Table 3 indicates that highly cited and high-value
patents increase for GWAS associations that are later replicated, but not for the others. The estimates

relating to drug discovery are also positive but noisier, probably because successful drug development

16To date, the precise function of PLA2G7 is still unclear. The consensus is that it may be a non-causal biomarker (i.e., an
indicator) for the risk of cardiovascular disease, which could contribute to explaining the low Open Targets score (0.045)
and the failure to be confirmed in GWAS replications. By comparison, the IL23R-Crohn’s disease pair uncovered by
Duerr et al. (2006), and discussed in Appendix A.2, has an Open Targets score of 0.468 and has been robustly replicated.
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is an infrequent outcome. In Column 4, I follow the approach of Dranove et al. (2022) and weigh
each drug by its scientific novelty, captured by the number of previous drugs that adopted the same
molecular-targeting design.!” The coefficient becomes more precise, suggesting that GWAS leads are
especially helpful in designing drugs that leverage new scientific approaches. These results suggest
that GWAS can boost pharmaceutical investments, but their impact on innovation is more nuanced
because they produce several false positive leads. If these are not avoided, they can waste resources
and reduce firms’ technological performance. Overall, this evidence is consistent with my baseline

hypotheses.

5.2 Data-Driven Predictions, Domain Knowledge, and Firm Investments

This subsection explores how data-driven predictions interact with firms’ domain knowledge. Pre-
vious studies have used R&D expenditures (Cohen and Levinthal, 1990) or the number of corporate
publications (Cockburn and Henderson, 1998; Gambardella, 1992) to identify a firm’s knowledge.
However, these proxies do not capture the specific domains in which the firm has the knowledge to
recognize opportunities. I make progress on this issue by recording the specific genes that each firm
has researched in its publications. This empirical approximation is grounded in the specificities of
the setting. In my interviews with industry professionals, they confirmed that firms in the bio-pharma
sector tend to specialize in genetic space.’® Some firms go as far as making the selection of their target
genes their fundamental competitive hypothesis. For instance, the biotech company Denali Therapeu-
tics even mentioned its strategic focus on what it calls “degenogenes” in its IPO filings (Appendix
C.3). My empirical approach captures the fact that when a new gene-disease association involving

one of these genes is published, Denali’s scientists will have the expertise to assess it.»

My research design exploits between-firm variation in genetic knowledge predating each GWAS
(Cattani, 2005), as schematically illustrated in Appendix Figure E.3. Columns 1 and 3 of Table 4
present results comparing patent applications filed by firms with and without previous publications
on the gene involved in a GWAS finding. While both groups of firms significantly increase their
investments, there is a stronger reaction by firms lacking gene-specific knowledge. Compared to the

sample mean, the regression coeflicients imply that patenting increases by one-third more among firms

UDranove et al. (2022) refer to the term “molecular-targeting design” as the mechanism by which drugs produce a
pharmacological effect (e.g., darapladib inhibits Lp-PLA,, thus being an “Lp-PLA; inhibitor”). This measure captures
which drugs are more novel from a scientific perspective. Other approaches in the literature include considering the
molecule’s chemical novelty instead of its biological mechanism (Krieger et al., 2022).

18The patent portfolio of the median firm in my sample spans only 19 genes, a number that further decreases to 11 if
considering only patents that will eventually be granted (Appendix C).

9 As one of my interviewees at Denali put it, whether to pursue or not a new genetic target appearing in the literature is an
assessment based on their extensive domain expertise: “We are so entrenched in the neuro field that we kind of know
off-the-cuft” (Interview, 17 October 2022).
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that had not previously researched the gene before the GWAS was published. This empirical evidence
confirms the second implication of my theoretical framework: firms without domain knowledge will

invest more after observing identical data-driven predictions.?°

Next, I investigate if firms with relevant domain knowledge can correctly triage data-driven
predictions and avoid those likely to be false positives (Arora and Gambardella, 1994b; Cohen and
Levinthal, 1994). Appendix Figure E.5 descriptively shows the reaction of firms with and without
domain knowledge to newly published gene-disease associations. Strikingly, the increase in patenting
based on a false positive is over three times larger for firms without past research on the gene. I
validate the statistical significance of this pattern with difference-in-differences regressions (Columns
2 and 4 of Table 4). The results confirm that the increase in patenting on false positive associations is
significant only for firms without prior research on the gene, supporting the idea that such firms lack
the knowledge to evaluate the findings. Mapping this result back to my theoretical framework, patent
applications building on false positive associations constitute type I errors that distort resources away

from pursuing valuable leads.

However, the above results leave open the possibility that domain knowledge simply increases
skepticism of atheoretical data-driven predictions (Allen and Choudhury, 2022; Boudreau et al.,
2016). Under this alternative explanation, avoiding false positives might mechanically result from
lower investments made by conservative firms, potentially at the cost of curtailing the exploration of
valuable opportunities. I rule out this possibility using the Open Targets data to capture the underlying
therapeutic value of gene-disease pairs with a continuous score.?! Figure 5 shows that firms with
domain knowledge are also better at selecting the most valuable opportunities among the data-driven
predictions.?? This result implies that firms without domain expertise are more likely to make omission

(or type II) errors despite investing quantitatively more.

Overall, I find that domain knowledge increases the efficiency of investments by focusing them
on promising data-driven opportunities, supporting my third hypothesis. Firms with genetic expertise

see a reduction of both type I and type II errors, but Figure 5 shows an interesting asymmetry. Domain

20Since larger firms also have broader knowledge bases, one might worry that this result reflects organizational inertia. To
rule out this concern, I repeat my analysis for small and large firms separately. I find the same result in both sub-samples:
GWAS generate stronger reactions from firms without domain knowledge regardless of their size (Appendix Figure E.4).
This evidence is consistent with non-expert firms updating their belief more strongly because of weaker ex ante priors
rather than their leaner organizational structure (Camuffo et al., 2024; Chavda et al., 2024).

2'While available only for a subset of gene-disease pairs in my sample, this metric offers a way to compare the “ground
truth” value of the combinations highlighted by GWAS associations. See Appendix D.2 for details.

22The better allocation of early-stage investments by firms with domain knowledge translates into more drug molecules
entering the discovery stage (Appendix Table E.6). However, these results should be interpreted cautiously since I do not
have information on licensing deals and firms without domain knowledge may license promising compounds for later
stages of drug development.
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knowledge seems relatively more effective in ruling out low potential gene-disease associations rather
than ruling in the best ones in the data. While this finding was not explicitly hypothesized in advance,
it is consistent with my theoretical framework and echoes the findings from past research (Boudreau
et al., 2016). In particular, evidence shows that experts tend to be better at distinguishing between
high and low-quality projects rather than singling out true breakthroughs (Krieger et al., 2023; Lane
et al., 2022b). Understanding under which conditions these results are confirmed with black-boxed

predictive technologies like generative Al is an interesting avenue for future research.

5.3 Robustness Checks

Several robustness checks further validate these findings. First, I replicate the main results by exploiting
aunique feature of GWAS. After spotting genetic mutations correlated with the disease, scientists must
map the mutation to the correct gene (Visscher et al., 2017).23 Especially at the beginning of my
sample, the gene reported in the original study was sometimes incorrect but later reclassified with more
precision by the curators of the GWAS Catalog. In my data, there are 9,273 such cases. Confirming
my primary results, Table 5 shows that only firms without domain knowledge increase investments
based on these wrongly reported data-driven associations. This additional test has the advantage of

not depending on my method for identifying false positives in the primary analysis.

Second, suppose domain knowledge truly helps assess the value of ambiguous data-driven predic-
tions. In that case, its beneficial effects should be proportionally higher when the GWAS findings are
harder to evaluate. For instance, evaluating an association should be more difficult when firms cannot
leverage publicly available scientific information or when the GWAS reports too many new findings
to validate. Indeed, firms without domain knowledge are more likely to fall for false positives when
the findings involve less-studied genes (Appendix Table E.7), but they make fewer mistakes when the
GWAS reports fewer associations to evaluate (Appendix Table E.8). Results are also robust to the
exclusion of GWAS co-authored with industry researchers, suggesting that social connections with

scientists are not a mechanism driving my findings (Appendix Table E.9).

Third, I examine whether patenting based on false positive findings is motivated by strategic
reasons, implying that doing so is not detrimental to firms’ performance, even if it does not result
in discovering new drugs. A few pieces of evidence help rule out this possible explanation. First,
using two alternative methods to identify patents likely to be motivated by strategic concerns (Righi

and Simcoe, 2023), I find the firms are more likely to apply for such patents based on true positive

23More specifically, they have to identify the location of molecular markers on the genome relative to the coordinates of
known genes (Vaughan and Srinivasasainagendra, 2013). For earlier GWAS, this step was not fully routinized, and it was
not uncommon to attribute the mutation to the wrong gene (usually a neighboring one). Wrongly mapped associations
are indeed 62.3% less likely to be replicated than correctly reported findings.

21



associations (Columns 1 and 2 of Appendix Table E.10). Intuitively, this finding is consistent with
the idea that there is little strategic value in targeting associations that do not have therapeutic value.
Second, patents targeting false positive leads are less likely to end up in litigation or being renewed
by the firm (Columns 3 and 4 of Appendix Table E.10). By revealed preferences, this implies that the

actual strategic value of such patents is very low.

Finally, it could be that pursuing false positive predictions results in learning spillovers for the
firms. This possibility would imply that the cost of selecting the wrong target is much lower for the
firm, consistent with recent work in a similar context (Frankel et al., 2024). To test this, I examine
innovation outcomes for gene-disease pairs involving the same gene and a similar disease of the GWAS
associations. The hierarchical nature of the MeSH disease taxonomy provides an easy way to find
diseases that share the same etiology and biological mechanisms. More specifically, I consider a
disease (i.e., a four-digit MeSH code) similar to the one targeted by the GWAS if it shares the same
“parent” disease (i.e., the same three-digit MeSH code). Appendix Table E.11 shows no evidence
of spillover effects on innovation outcomes, suggesting that the beneficial effects of experimentally

learning from mistakes are likely low in this context.

6 Firm-Level Mechanisms

The previous section showed that domain knowledge allows firms to recognize false positive predictions
and focus investments on valuable opportunities. In this section, I investigate the mechanisms behind
these results. First, although my analysis used corporate publications to find the specific genes on
which firms had expertise, the results might reflect broader organizational capabilities also applying
to genes not in the publications. Second, the ability to recognize opportunities could stem from
different organizational learning mechanisms (Di Stefano et al., 2024). Domain knowledge could
enable offline learning either because it reflects practical experience in the domain or because it

permits the application of theoretical principles to evaluate predictions.

6.1 Empirical Strategy

The findings in the previous section are drawn from split-sample regressions at the gene-disease level
that exploit between-firm variation in gene knowledge. In this section, I use an alternative source
of variation: the within-firm heterogeneity in the available knowledge about different human genes.
Panel (a) of Appendix Figure E.6 provides a graphical representation of this research design. The
basic intuition is akin to the preceding section since firms might better understand the biological
mechanisms of specific genes than others due to their past research choices. However, this research

design benefits from the ability to include firm fixed effects in the regression models. As a result, the

22



estimates effectively control for unobservable firm characteristics that correlate with their ability to

recognize valuable opportunities.

For this analysis, [ construct a dataset where each observation represents a potential firm investment
in a gene-disease pair supported by GWAS evidence. This data structure allows me to investigate the
investment decisions of firms that observe data-driven predictions. I assume that firms consider all
GWAS findings about diseases they have previously invested in.24 Pharmaceutical firms are usually
active in specific diseases (that can be thought of as markets), which gives a convenient way to
assemble the risk set of GWAS associations that are likely to catch their attention (Bikard, 2018;
Krieger, 2021). While the earlier regressions at the gene-disease level offer a more accurate estimate
of GWAS’ aggregate impact, the within-firm design provides a tighter way to isolate the effect of
domain knowledge on firm investments. However, variation in firms’ past research portfolios is not

random, so the results at the firm level should be interpreted as suggestive correlations.

I use OLS to estimate the following specification at the firm-gene-disease level:

Y5 = o+ B Domain Knowledgey ; j + pif; + 605+ €f, 5, 2)

where Y7 ; ; is the number of patent applications by firm f for innovations targeting the gene-disease
combination < 4,7 > appearing in a GWAS. Domain Knowledgey; ; is a dummy that equals one
if the firm possesses domain knowledge about the gene involved in the gene-disease association (as
proxied by previous publications on that gene). f; are firm-by-disease dummies, accounting for
firm specialization in specific disease areas as well as potential differences in how firms weigh errors
of omission against errors of commission.?s ¢; ; is a time effect that controls for the year when the
gene-disease association is published. The coeflicient of interest 5 captures how a firm’s investment
decisions change when it can leverage genetic knowledge to evaluate the GWAS finding. Estimates

report standard errors clustered at the firm level.

24This choice is consistent with what emerged from my interviews: “I would say we definitely pay attention to GWAS
studies. Any time there is a GWAS study that, you know, that chose an indication that we’re interested in, we definitely pay
attention” (Interview, 9 December 2022). In the appendix, I experiment with alternative ways to define the appropriate
risk set of GWAS evaluated by a firm, finding consistent results (Appendix Tables E.14 and E.15).

25For instance, an alternative explanation of my previous findings could be that firms follow different strategies regarding
false positives. Firms that prioritize minimizing the risk of missing a valuable target might be willing to incur several
commission errors, and vice versa. Including firm fixed effects helps rule out that the results are driven by firms pursuing
different strategies regarding the weight given to type I vs. type II errors. This is because if the relative disutility of
a false negative relative to a false positive is a fixed firm-specific parameter, the firm-fixed effect will absorb it. The
additional inclusion of firm-by-disease fixed effects would also consider the more likely case that this parameter depends
on the specific disease (e.g., for Abbvie, missing out on a Crohn’s disease target might be worse than doing so for other
diseases where it does not specialize).
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6.2 How Does Domain Knowledge Help?

I begin by replicating the main results of the paper using within-firm variation. The results are
consistent with the gene-disease-level evidence and reported in Appendix Table E.13. Column 1
shows that firms are less likely to invest in a false positive when they can draw upon their knowledge
of gene biology. Note that including firm fixed effects changes the interpretation of the estimates.
In this case, the coeflicient captures the decrease in patenting targeting false positive associations
when a firm has domain knowledge, compared to other false positives where the firm lacks such
expertise. This result is robust to including stringent firm-by-disease fixed effects that better account
for firm specialization in specific disease areas (Column 2). Columns 3 and 4 symmetrically show
that domain knowledge increases the likelihood of recognizing valuable data-driven opportunities. In
addition to confirming earlier analyses, these findings suggest that the main results are not due to

organizational-level capabilities but rather to the specific distribution of knowledge across genes.

Next, I explore why domain knowledge is conducive to my results. A long tradition in the man-
agement literature has emphasized how organizations can learn routines to perform even complex
operations, such as selecting innovation projects (Nelson and Winter, 1982). This line of work em-
phasizes these heuristics’ tacit and often poorly understood nature. In contrast, a growing strand of
research highlights the importance of developing theory-based understandings to guide action (Ca-
muffo et al., 2024; Chavda et al., 2024; Wuebker et al., 2023). Recent evidence shows that experience
unlocks higher performance only when accompanied by an understanding of the causal relationships
between antecedents and outcomes (D1 Stefano et al., 2024). In my setting, this would suggest that the
ability to recognize valuable GWAS findings stems from understanding the underlying mechanisms of

what makes an opportunity valuable rather than from mere practice or generic organizational routines.

I categorize firms’ knowledge types to shed some light on this issue by distinguishing firms’
publications that denote testing capabilities from those focused on the genetic mechanisms of diseases.
Following the approach of Azoulay et al. (2021), I record which firm publications are translational
research that applies theoretical genetic research to therapeutic purposes (Appendix D.3). I also code
firms that have conducted clinical or disease-oriented research that was not aimed at elucidating genetic
mechanisms. I then run separate regressions using each of these proxies for domain knowledge. Figure
6 shows that only translational knowledge aids in correctly avoiding false positive associations among
the GWAS findings. Instead, clinical research or generic experience with the disease do not confer any
advantage when assessing GWAS findings. Coupled with my earlier findings, this evidence suggests
that offline learning is driven by the ability to apply basic scientific principles to rule out spurious

gene-disease associations (Di Stefano et al., 2024; Fleming and Sorenson, 2004).

Finally, one might question why firms do not wait for the uncertainty surrounding a gene-disease
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association to dissipate. For instance, a firm could hold back until further research validates the finding
or strategically delay investments to observe competitors’ actions (Krieger, 2021). Appendix Table
E.16 shows descriptive evidence that waiting before investing in a GWAS finding indeed correlates
with a lower likelihood of targeting a false positive association. However, it seems to come at the
cost of lower-impact patents and lower chances of discovering a drug (albeit the results are noisier in
this case). Since patenting results in claiming intellectual property space, being late might result in
fewer avenues for future innovation (Eggers, 2012). This result illustrates how data-driven predictions
generate a tension between carefully validating them and investing ahead of competitors. Evaluating
alternatives offline is not only cheaper but also likely faster, suggesting another advantage of domain

knowledge that future research should explore more.

7 Conclusion

While the field of strategic management has extensively researched how firms can exploit innovation
opportunities, the rapid diffusion of big data and predictive tools is transforming how firms identify
them. In particular, data-driven predictions offer new avenues for assessing the value of potential
investments instead of leveraging domain knowledge. This paper provides some of the first empirical
evidence of the consequences of this phenomenon. I introduce a new conceptual and empirical
framework to analyze how data-driven predictions and firms’ domain knowledge interact to shape
innovation performance. Leveraging the unique features of GWAS, I show that data-driven predictions
can have heterogeneous effects on firms depending on their expertise. Firms with relevant genetic
knowledge rely less on GWAS findings but disproportionally avoid investing in the false positives
uncovered by GWAS. Together, these patterns are consistent with those firms being better able to

evaluate the data-driven findings.

My results underscore the continuing importance of domain knowledge in the innovation process
but with anew role: since the abundance of data-driven predictions is not accompanied by a generalized
reduction in the cost of validating them, domain knowledge becomes essential to avoid wasting
resources on dead ends. My framework also highlights the boundary conditions of this reasoning.
If predictive tools were perfectly accurate or validating their predictions was costless, the need to
prioritize among data-driven predictions would be lower. However, this is not the case in many
innovation and strategy contexts. My theory reconciles conflicting results in previous research by
suggesting that when data-driven findings are straightforward to interpret, firms can triage them
without relying on domain knowledge, thus benefiting new entrants or smaller firms (Nagaraj, 2022;
Galdon-Sanchez et al., 2024). Conversely, one should expect that understanding the domain is a

necessary complement to benefit from data predictions in more complex domains where predictions
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are likely noisier (Kao, 2023; Otis et al., 2024).26

An important contribution of this paper is methodological. The innovation process is often
depicted as a search through landscapes of technological combinations (Kneeland et al., 2020; Fleming,
2001). Traditional research in this area frequently uses computer simulations to characterize optimal
exploration strategies and their organizational implications (e.g., Knudsen and Levinthal 2007). In
contrast, this paper joins a recent effort to try to empirically characterize organizational search (Kang,
2024; Kao, 2023; Nagaraj, 2022) and how different search strategies map into innovation outcomes
(Tranchero, 2024). My work conceptualizes and exemplifies a new measurement strategy to depict
empirical landscapes using text-based methods, opening up new research avenues for an empirical
re-examination of the seminal contributions in the field of organizational search (Denrell and March,
2001; Levinthal and March, 1993; Nelson and Winter, 1982).

My research also has practical implications for managers and policymakers navigating the changing
landscape of predictive technologies such as Al To cut through the hype surrounding big data, it is
essential to understand what predictive technologies can and cannot do (Agrawal et al., 2018b).
Specifically, this paper proposes that while data-driven predictions are valuable in shortlisting potential
opportunities—which is no small feat—they are not without limitations. This is especially true for
what Camuffo et al. (2023) call “low-frequency/high-impact” organizational decisions. In these
contexts, the source of competitive advantage lies in the ability to interpret and evaluate what the data
suggest. Managers should be mindful that the benefits of predictive technologies may be most evident
to organizations with a solid domain knowledge base. Similarly, governments funding large-scale
data efforts, which are especially common in the bio-pharmaceutical world, should note how they
might affect competition dynamics. Instead of being a panacea to foster entry and market dynamism,
large-scale mapping efforts might contribute to stifling competition if they require complementary

assets that are the purview of incumbents.

More broadly, predictive technologies allow innovators to identify promising areas of the tech-
nological landscape based on past observations (Kim, 2024b). As a result, data-based correlations
and extrapolations increasingly guide organizational decision-making instead of logical reasoning and
domain knowledge. While the popular press often hails the benefits of these developments (Anderson,
2008; Schmidt, 2023), the risk of not understanding why innovations work could be the accumulation
of an “intellectual debt” (Zittrain, 2019). This risk is especially evident in fields like drug discovery,

where Al is used to find drugs with unknown mechanisms of action, thus preventing the anticipation of

26Recent work has started building on the ideas of the present paper and offering additional confirmation at the individual
level. Toner-Rodgers (2024) shows that researchers in material sciences have become more innovative thanks to Al-
assisted tools. However, the effects are heterogeneous, and the greatest benefit occurs for the most knowledgeable
scientists, who can prioritize promising predictions and avoid false positives.
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potential side effects (Heaven, 2023). With firms hungry to find innovation opportunities while poten-
tially shying away from investing in domain knowledge (Balasubramanian et al., 2022), more research
is needed to understand the nuanced implications of putting data ahead of theoretical understanding.

This paper serves as a first step in this direction.

Finally, despite the contributions outlined above, a few limitations of this paper should be ac-
knowledged. First, fully capturing the aggregate effects of GWAS on innovation is beyond its scope.
Data-driven predictions in genomics might give rise to a “streetlight effect” (Hoelzemann et al., 2024),
potentially diverting investments into suboptimal targets with negative consequences for social welfare.
Moreover, since I do not observe costs directly, the corresponding implications for firm profitability
are also beyond the scope of this study. Second, this paper does not explore the strategic responses of
firms without domain knowledge. It is conceivable that a market for expertise could emerge, where
firms outsource not the generation of ideas but expert judgment to assess the potential of data-driven
opportunities and avoid false positives (Agrawal et al., 2021; Luo et al., 2021). Finally, while my
research design focuses on holding the content of data-driven predictions constant to study firm re-
sponses, another critical dimension to explore is heterogeneity in prediction quality. Identifying which
firms can obtain better predictions and understanding how organizational factors influence this skill are

both first-order questions. Further exploration of these ideas is an exciting avenue for future research.
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8 Figures and Tables

(b) Schema of a typical GWAS
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Figure 1: Example and schema of a typical GWAS

(a) Abstract of the GWAS by Duerr et al. (2006) that identi-

fied IL23R as a therapeutic target for Crohn’s disease

A Genome-Wide Association Study
Identifies IL23R as an Inflammatory
Bowel Disease Gene

Richard H. Duerr,? Kent D. Taylor,>* Steven R. Brant,>® John D. Rioux,”® Mark S. Silverberg,’
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Themistocles Dassopoulos,5 Alain Bitton,*? Huiying Yang,g’4 Stephan Targan,“'14

Lisa Wu Datta,’ Emily O. Kistner,*® L. Philip Schumm,*® Annette T. Lee,*® Peter K. Gregersen,“‘
M. Michael Barmada,? Jerome I. Rotter,>* Dan L. Nicolae,'**” Judy H. Cho™®*

The inflammatory bowel diseases Crohn's disease and ulcerative colitis are common, chronic
disorders that cause abdominal pain, diarrhea, and gastrointestinal bleeding. To identify genetic
factors that might contribute to these disorders, we performed a genome-wide association study.
We found a highly significant association between Crohn's disease and the /L23R gene on
chromosome 1p31, which encodes a subunit of the receptor for the proinflammatory cytokine
interleukin-23. An uncommon coding variant (rs11209026, ¢.1142G>A, p.Arg381Gln) confers
strong protection against Crohn’s disease, and additional noncoding /L23R variants are
independently associated. Replication studies confirmed /L23R associations in independent cohorts
of patients with Crohn’s disease or ulcerative colitis. These results and previous studies on the
proinflammatory role of IL-23 prioritize this signaling pathway as a therapeutic target in

inflammatory bowel disease.
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(c) Schema of Duerr et al. (2000)
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Note: Panel (a) shows the abstract of the Duerr et al. (2006) GWAS published in Science. The abstract highlights the
potential implications of using the IL23R gene as a target to cure inflammatory bowel diseases. Panel (b) shows a schema
of how a GWAS unfolds. First, researchers select the disease of interest and assemble a group of cases (subjects showing
the condition) and one of controls (subjects without the condition). Then, the genome of people with and without the
condition is genotyped in search of differences. Finally, statistical methods are used to test the association between any
genetic mutation and the disease of interest. The panel at the bottom is the characteristic “Manhattan plot,” which indicates
the location of the statistically significant genetic variants in the chromosome. On the Y axis, there is the strength of the
finding expressed as -logjo(p-value), hence higher values correspond to stronger associations. Panel (c) shows the same
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schema for the GWAS of Duerr et al. (2006). See Appendix A.2 for a detailed case study on this GWAS.

33



Figure 2: Pharmaceutical firms search for drugs in an empirical landscape of gene-disease pairs
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Note: The figure exemplifies the novel measurement approach adopted in this paper. Machine learning tools extracting
genes and diseases from patent and paper texts allow to map them onto an empirical landscape of gene-disease combinations.
The heterogeneous impact of GWAS on firm investments can be measured by tracking patenting at the gene-disease
combination level, avoiding the use of patent citations. APOJ is an alternative name for the CLU gene. See the conceptual
details in Appendix B.

Figure 3: GWAS findings have a large and persistent impact on firm innovation investments
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Note: The figure shows the event study coefficients estimated from the following specification:

Patent Applications; j; = o+ Y. f.GWAS;; x 1(2) + yGD; ; + §; x Gene; + wy x Diseasej + €; j+. The
dependent variable is the number of USPTO patent applications for innovations targeting a specific gene-disease combi-
nation. The chart plots values of 3, for different lags z before and after the publication of the first GWAS reporting the
gene-disease pair. Regressions include gene x year and disease x year fixed effects, as well as gene-disease combination
fixed effects. Standard errors are clustered two-way at the gene and disease level.
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Figure 4: Firms investing in innovations based on false positive GWAS findings pivot away over time

(a) PLA2G7 - myocardial infarction (b) Time-varying impact of false positive GWAS
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Note: Panel (a) shows the count of yearly USPTO patent applications for innovations targeting the PLA2G7 - myocardial
infarction gene-disease pair. The green line in 2010 marks the publication of Suchindran et al. (2010), while the red
line in 2014 marks the failure of clinical trials for Darapladib, a GlaxoSmithKline drug targeting this combination. Panel
(b) shows the event study coefficients from the same specification of Figure 3. The dependent variable is the number of
USPTO patent applications for innovations targeting a specific gene-disease combination. The chart plots values of 3, for
different lags z before and after the publication of a GWAS finding about the gene-disease pair that is not subsequently
replicated. Regressions include gene x year and disease x year fixed effects, as well as gene-disease combination fixed
effects. Standard errors are clustered two-way at the gene and disease level.

Figure 5: Firms with domain knowledge invest proportionally more in the top tail of data-driven
opportunities, while those lacking it invest mostly in gene-disease associations of low-value
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Note: This figure shows the increase in USPTO patent applications for innovations on a gene-disease pair after the
publication of a GWAS, as a share of the sample average (6OA rs/w). The increase is estimated with split-sample
regressions that consider gene-disease pairs of different therapeutic potential among those uncovered by GWAS, as proxied
by the Open Targets score. Using the Open Targets score to proxy for prediction accuracy permits investigating firms’
ability to recognize the most valuable gene-disease combinations, even among replicable associations. Details on the
regressions are reported in Appendix Table E.12.
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Figure 6: The ability to avoid false positives is driven by translational knowledge that permits a
scientific evaluation of GWAS findings, but not by clinical knowledge or generic disease experience.
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Note: This figure shows results separately for firms with different types of domain knowledge. Each coefficient is
estimated from a separate regression with the same dependent variable. Patent applications targeting false positives:
count of USPTO patent applications for innovations targeting a specific gene-disease combination that is not replicated by
subsequent GWAS. Translational publication: 0/1 = 1 if the firm has published at least one previous translational paper
involving the gene, according to the definition by Azoulay et al. (2021) (Appendix D.3). Clinical publication: 0/1 = 1 if
the firm has published at least one previous clinical paper involving the gene, using the classification of NIH iCite. Disease
publication: 0/1 =1 if the firm has published at least one previous paper involving the disease but not the specific gene.
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Table 1: Summary statistics at the gene-disease combination level

Panel A: cross-sectional descriptives

mean median std min max N
Ever a patent application (0/1) 0.2182 0 0.4131 0 1 7,223,924
...by firms with gene knowledge (0/1) 0.0478 0 0.2134 0 1 7,223,924
...by firms without gene knowledge (0/1) 0.2102 0 0.4074 0 1 7,223,924
Ever a drug (0/1) 0.0019 0 0.0433 0 1 7,223,924
Ever treated by GWAS (0/1) 0.0025 0 0.0498 0 1 7,223,924
Has Open Targets score (0/1) 0.0823 0 0.2748 0 1 7,223,924
Open Targets score 0.0401 0.0074 0.0872 0.00004 0.8975 594,353

Panel B: panel-level descriptives

mean median std min max N
Patent applications 0.1314 0 1.6831 0 1346 137,254,556
...by firms with gene knowledge 0.0376 0 1.0875 0 1346 137,254,556
...by firms without gene knowledge 0.0938 0 0.9243 0 1257 137,254,556
Cit-weighted patents 7.1358 0 85.5509 0 39,899 137,254,556
New drugs (total) 0.0002 0 0.0203 0 22 137,254,556
New drugs (weighted) 0.0001 0 0.0064 0 325 137,254,556
Treated by GWAS (0/1) 0.0005 0 0.0234 0 1 137,254,556
True positives (0/1) 0.0001 0 0.0013 0 1 137,254,556
Year 2010 2010  5.4772 2001 2019 137,254,556

Note: This table lists summary statistics at the gene-disease combination level for 7,223,924 combinations (Panel A) and at the gene-disease-year level for
a balanced panel of 137,254,556 observations (Panel B). Ever a patent application: 0/1 =1 if the gene-disease combination appeared in at least one patent
application. Ever a patent application by firms with gene knowledge: 0/1 =1 if the gene-disease combination appeared in at least one patent application by
firms with previous publications on the gene involved. Ever a patent application by firms without gene knowledge: 0/1 = 1 if the gene-disease combination
appeared in at least one patent application by firms without previous publications on the gene involved. Ever a drug: 0/1 = 1 if the gene-disease combination
is targeted by at least one drug in the discovery stage. Ever treated by GWAS: 0/1 = 1 if the gene-disease combination is ever reported by a GWAS. Has
Open Targets score: 0/1 = 1 if the gene-disease combination has an Open Targets score. Open Targets score: average value of the Open Target score (for
gene-disease pairs that have it). Patent applications: count of USPTO patent applications for innovations that target a specific gene-disease combination.
Patent applications by firms with gene knowledge: count of USPTO patent applications for innovations that target a specific gene-disease combination
filed by firms with previous publications on the gene involved. Patent applications by firms without gene knowledge: count of USPTO patent applications
for innovations that target a specific gene-disease combination filed by firms without previous publications on the gene involved. Cit-weighted patents:
count of USPTO patent applications for innovations that target a specific gene-disease combination weighted by citations received up to 7 years after
their publication. New drugs (total): number of molecules on a gene-disease combination entering the discovery stage. New drugs (weighted): number
of molecules on a gene-disease combination entering the discovery stage weighted by their scientific novelty (i.e., by the number of times that the same
mechanism of action has been used before, following Dranove et al. 2022). Treated by GWAS: 0/1 = 1 in all years after a gene-disease pair is reported
by its first GWAS. True positives: 0/1 = 1 for GWAS findings that are later replicated by another GWAS about the same disease. Year: average year of
observations in the panel.
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Table 2: Pharmaceutical firms heavily increase their investments in gene-disease combinations that
receive a GWAS, even if the association is a false positive finding

Dependent Variable: USPTO patent applications
Post x GWAS 0.2681***  (0.1637*%*  (.1532%** 0.0676%**
(0.02206) (0.01985) (0.01779) (0.01605)
...X True Positive 0.5739%** 0.48027%**

(0.08545)  (0.07693)

Gene-Disease FE YES YES YES YES
Disease FE YES NO YES NO
Gene FE YES NO YES NO
Year FE YES NO YES NO
Disease-Year FE NO YES NO YES
Gene-Year FE NO YES NO YES

N of Observations 137,254,556 137,254,556 137,254,556 137,254,556
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 0.1314 0.1314 0.1314 0.1314

Note: *, ** *#** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways
at the disease and gene level. USPTO patent applications: count of USPTO patent applications (by all firms) filed in a given year that target a specific
gene-disease combination. Post x GWAS: 0/1 = 1 in all years after a gene-disease pair is reported by its first GWAS. True Positive: 0/1 = 1 for GWAS
findings that are later replicated by another GWAS about the same disease. Given that 84.3% of GWAS findings are non-replicable, the estimate in
Column 4 implies that around 34.8% of the total increase in patent applications is directed at non-replicable gene-disease associations.

Table 3: Only investments based on true positive GWAS associations yield downstream outcomes like
valuable patents or new drugs entering the discovery stage

Dependent Variable: Cit-weighted patents Patent market value Drugs (total) Drugs (weighted)
Post x GWAS -0.2738 0.2338 -0.0004 -0.0000
(0.51521) (0.14649) (0.00026) (0.00008)
...x True Positive 5.2464%* 2.6963%** 0.0011 0.0009*
(1.83822) (0.74601) (0.00393) (0.00043)
Gene-Disease FE YES YES YES YES
Disease-Year FE YES YES YES YES
Gene-Year FE YES YES YES YES
N of Observations 137,254,556 137,254,556 137,254,556 137,254,556 7
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 7.1358 0.6317 0.0002 0.0001

Note: *, ** *** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at the disease and gene level.
Post x GWAS: 0/1 = 1 in all years after a gene-disease pair is reported by its first GWAS. True Positive: 0/1 = 1 for GWAS findings that are later replicated by another GWAS about
the same disease. Cit-weighted patents: count of USPTO patent applications filed in a given year that target a specific gene-disease combination, weighted by the number of patent
citations received up to seven years after patent publication. Patent value: estimated stock market value (in constant USD) of patents granted to public firms using data from Kogan
etal. (2017). Drugs (total): number of molecules on a gene-disease combination entering the discovery stage. Drugs (weighted): number of molecules on a gene-disease combination
entering the discovery stage weighted by their scientific novelty (i.e., by the number of times that the same mechanism of action has been used before, following Dranove et al. 2022).
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Table 4: Firms with genetic domain knowledge invest proportionally less in gene-disease combinations
that receive a GWAS but are able to avoid false positive associations

Dependent Variable: USPTO patent applications by...
..firms with ..firms w/out
gene knowledge gene knowledge
Post x GWAS 0.0381#%* 0.0138 0.1256%%* 0.0539%**
(0.01009) (0.00821) (0.01429) (0.01052)
...x True Positive 0.1216%* 0.3586%*%*
(0.03917) (0.05837)
Gene-Disease FE YES YES YES YES
Disease-Year FE YES YES YES YES
Gene-Year FE YES YES YES YES
N 137,254,556 137,254,556 137,254,556 137,254,556
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 0.0376 0.0376 0.0938 0.0938

Note: *, ** *** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways
at the disease and gene level. USPTO patent applications: count of USPTO patent applications filed in a given year for innovations that target a specific
gene-disease combination; the count is then divided between firms with and without previous publications on the gene. Post X GWAS: 0/1 = 1 in all years
after a gene-disease pair is reported by its first GWAS. True Positive: 0/1 = 1 for GWAS findings that are later replicated by another GWAS about the same
disease.

Table 5: Firms with genetic domain knowledge avoid investing in GWAS associations that mistakenly
report the wrong gene in the original publication

Dependent Variable: USPTO patent applications by...

...firms with ...firms w/out

...all firms gene knowledge gene knowledge

Post x Wrong GWAS Gene 0.0986* -0.0467 0.1453%#%%*
(0.04945) (0.03994) (0.02609)
Gene-Disease FE YES YES YES
Disease-Year FE YES YES YES
Gene-Year FE YES YES YES
N 136,935,850 136,935,850 136,935,850
N of Gene-Diseases 7,207,150 7,207,150 7,207,150
Mean of Dep Var: 0.1304 0.0372 0.0931

Note: *, ** *¥** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level.
The sample is slightly smaller because it excludes gene-disease pairs that receive a correctly reported GWAS association.
Std. err. clustered two-ways at the disease and gene level. USPTO patent applications: count of USPTO patent
applications filed in a given year that target a specific gene-disease combination; the count is then divided between firms
with and without previous publications on the gene. Post x Wrong GWAS Gene: 0/1 = 1 in all years after a gene-disease
pair is reported by its first GWAS, but only including wrongly reported protein-coding genes (i.e., that are later reclassified
by the curators of the GWAS Catalog as being mutations in another gene).
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A Additional Details on GWAS

Genomics is the branch of biological sciences concerned with the study of genomes, i.e., the entire
collection of an organism’s genes. Genes are sequences of DNA bases that encode the instructions to
synthesize gene products, most notably proteins. The normal functioning of a gene can be altered by a
mutation, potentially giving rise to severe health conditions. Knowing the genetic roots of diseases has
practical consequences for the design of pharmaceutical drugs (Nelson et al., 2015): leveraging the
understanding of gene-disease relationships permits the identification of targets that can be inhibited
or activated to produce a desired therapeutic effect. Once the target has been found, scientists can
design drugs that bind to the malfunctioning gene (or its products).

A.1 A Scientific Primer

Diseases caused by individual gene mutations are called Mendelian disorders. However, Mendelian
diseases are typically severe and, hence, rare because they tend to be eliminated by evolutionary
pressures. More common are polygenic diseases (also called complex diseases) that are not due to a
single genetic factor but rather by many mutations. For polygenic diseases, any genetic mutation can
increase the risk of presenting the condition even without being necessary or sufficient for manifesting
the disease. Individual mutations are usually responsible for only a tiny proportion of the heritability of
complex diseases. Although complex disorders often cluster in families, they do not have a predictable
inheritance pattern. Convoluted interactions between genetic predisposition and environmental factors
concur in the etiology of such diseases. Therefore, scientists need to search through all of the ~ 19, 000
protein-coding genes to find the mutations involved in each of the thousands of polygenic diseases
(Tranchero, 2024).

Over the years, researchers have concluded that common disorders are influenced by genetic mutations
also common in the population (Reich and Lander, 2001). Instead of looking for individual genes with
strong effects on phenotypes, the field has moved toward studying common, generic variants that have
a negligible impact on the likelihood of having a disease when taken in isolation (Bush and Moore,
2012). But what precisely is a variant? At the most fundamental level, two genomes differ in a specific
genetic locus if they present an alternative single nucleotide (adenine, thymine, cytosine, or guanine)
in that location. Such mutation in one DNA basis is called single-nucleotide polymorphism (SNP)
when it appears in at least 1% of the population. One approach for associating SNPs with a disease
relies on the fact that a causative variant should be found more frequently in cases than in control
subjects. In practice, this means looking for statistical correlations between specific genetic variants
and diseases in large samples of unrelated people.

Building over this logic, genome-wide association studies (GWAS) are hypothesis-free methods for
identifying associations between genetic regions and diseases (Visscher et al.,2017). Using genotyping
technologies on large samples, GWAS compare genetic differences between affected and unaffected
individuals. In a typical GWAS project, researchers obtain DNA from two groups of participants:
patients with the disease studied and healthy individuals with comparable demographics. Then,
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selected SNPs on the chromosome are scanned using microarrays that can genotype up to millions of
SNPs for each individual. Variants significantly more likely to appear in the affected patients could be
biologically relevant to the disease and thus potentially be involved with its etiology. Such SNPs might
affect gene expression and function, mainly when located within a protein-coding gene. It is essential
to underscore that array-based genome-wide studies do not sequence the DNA base by base since
they only determine the presence or absence of a relatively small number of SNPs (usually < 0.1% of
the genome). Nevertheless, exploiting the fact that the co-occurrence of variants in proximal genetic
loci is not random (a phenomenon called linkage), researchers can use reference genomes (such as
the HapMap) to parsimoniously infer the characteristics of the whole genome from the much smaller
number of SNPs genotyped (Bush and Moore, 2012).

GWAS findings entail a substantial risk of false positives (Boyle et al., 2017; MacArthur, 2012).
Findings often fail to replicate because of demographic biases in the convenience sample used by the
original studies (e.g., white men from North America), or due to mistakes in mapping the variant
to the right gene when publishing the result (Vaughan and Srinivasasainagendra, 2013). Even if the
association is robust to replications, understanding the biological mechanisms through which it affects
human health requires additional study. Moreover, most associations explain a small fraction of the
variation in disease susceptibility, which means that the therapeutic benefit from intervening in them
could be quite limited (Goldstein, 2009). These limitations notwithstanding, GWAS have proven
extremely useful in uncovering drug targets that can assist in identifying compounds suitable for drug
repurposing (Reay and Cairns, 2021; Visscher et al., 2017). GWAS also permits the identification of
new uses for existing drugs by pointing out new conditions that might be addressed acting on a given
target (Andriani and Cattani, 2022; Pushpakom et al., 2019).

A.2 Case Study: The GWAS of Duerr et al. (2006)

In 2015, an estimated 3 million U.S. adults (around 1.3% of the population) reported being diagnosed
with chronic inflammation of the gastrointestinal tract, known as inflammatory bowel disease (IBD).
The two most frequent IBD conditions are Crohn’s disease and ulcerative colitis (Dahlhamer et al.,
2016). Given the prevalence and severity of these diseases, researchers have been intensively studying
Crohn’s and related diseases. According to the DisGeNET data, IBD was in the top 1% of the diseases
with the highest genetic research intensity in the pre-GWAS era (Tranchero, 2024). A few genes, such
as NOD2, had been identified as harboring causal mutations by 2005, but without fully explaining the
genetic risk for the disease.

In December 2006, Duerr et al. (2006) published one of the very first GWAS. The study involved
567 patients of European ancestry affected by IBD and 571 healthy controls. The GWAS identified
genetic mutations in the interleukin 23 receptor gene (IL23R) as significantly associated with Crohn’s
disease and ulcerative colitis. Before this finding, IL23R was among the least studied human genes.
However, many scientists followed up on the promising lead uncovered by the Duerr et al. paper, often
to elucidate the causal mechanisms (called “pathways”) through which IL23R exerts its effects. It is



now understood that the IL23R gene provides instructions for making a protein called the interleukin
23 receptor, an essential constituent of antibodies that identify foreign substances and defend the body
against infections by promoting local inflammations. The IL-23 receptor interacts with a protein
called IL-23, binding together like a lock and key (Bianchi and Rogge, 2019). When IL-23 binds to its
receptor, it triggers chemical signals to develop and activate Th17 cells, a specific type of lymphocytes
that promote inflammation to fight foreign invaders such as viruses. Malfunctioning IL23R genes
might misdirect such inflammatory reactions toward human tissues, giving rise to autoinflammatory
diseases like Crohn’s.

The work of Duerr et al. (2006) uncovered the crucial role that malfunctioning of IL23R has in inducing
inflammations in the intestines. Furthermore, the discovery of IL23R’s role in IBD suggested that drugs
could be engineered to interfere with malfunctioning IL.23R genes. This is indeed what ustekinumab, a
fully human monoclonal antibody, does by blocking the p40 subunit of IL.23 and preventing its binding
with the IL.23 receptor (Figure A.1). As of 2024, ustekinumab (Stelara, by Janssen Pharmaceuticals)
is a drug approved for treating chronic inflammatory diseases in several jurisdictions, including the
United States, Europe, and Australia. Several other drugs are being designed to target the 1L.23
receptor complex, including risankizumab (Skyrizi, by AbbVie), tildrakizumab, and guselkumab.
Interestingly, all these molecules have been repositioned as Crohn’s disease intervention from their
initial indication for psoriasis (Reay and Cairns, 2021). This highlights how uncovering new drug
targets through GWAS can enable the rapid repurposing of gene-specific molecules developed for
other diseases (Andriani and Cattani, 2022; Kang, 2024), as well as developing new ones.

Figure A.1: GWAS findings on Crohn’s disease provided new opportunities for drug development
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Note: The figure exemplifies how GWAS can guide drug development by finding new diseases that can be addressed
with existing molecules. Once Duerr et al. (2006) located a new variant in IL23R that disrupts its function, monoclonal
antibodies that target the IL23 receptor pathway were repositioned as Crohn’s disease interventions from their original
indication for psoriasis. The image is an edited version of the original figure from Reay and Cairns (2021).



B Measurement Approach

This appendix describes and formalizes the landscape-based measurement approach adopted in the
paper to bypass patent-to-paper citations. Two case studies are presented to showcase its advantages
relative to bibliometrics.

B.1 Shortcomings of Patent-to-Paper Citations

Traditionally, measuring the technological impact of a scientific project involves counting the patent
citations received by the publications where its output is codified (Arora et al., 2021; Azoulay et al.,
2019; Fleming et al., 2019). This approach has been validated by methodological studies showing that
patent-to-paper citations are a good way to proxy knowledge flows from science to technology (Duguet
and MacGarvie, 2005; Narin et al., 1997; Roach and Cohen, 2013). Therefore, it is not surprising that
most existing empirical studies use non-patent literature citation counts to measure the applied impact
of science. The recent diffusion of open-access databases of patent-to-paper citations has further
increased the appeal of this approach (Bryan et al., 2020; Marx and Fuegi, 2020). Nonetheless, this
measurement approach suffers from two shortcomings.

First, relying on explicit references to science usually provides a downward biased measure of impact
(Myers and Lanahan, 2022). Direct citations, for instance, would not capture foundational intellectual
influences that become common knowledge in a field, nor knowledge flowing through more compli-
cated citation patterns (e.g., a patent citing a publication that cites the focal paper of interest). These
examples fall under what Roach and Cohen (2013) define as “errors of omission.” Such underestimate
is possibly magnified for basic research with spillovers in fields very different from where the idea
originated and through unpredictable channels (Azoulay et al., 2019; Cohen et al., 2002).

Second, and similarly to academic papers, non-patent literature citations can be made for various
reasons (Teplitskiy et al., 2022). Up to half of the citations are possibly devoted to irrelevant prior
art (Jaffe et al., 2000), likely for strategic reasons (Kuhn et al., 2020; Lampe, 2012). This practice is
what Roach and Cohen (2013) define as “errors of commission,” namely citations not corresponding
to knowledge relevant to the invention. But even if the reference captures an actual knowledge flow,
it is hard to know what part of the study the patent builds on. Academic papers often make multiple
contributions; the citation might refer to any of those. Assessing the value of individual contributions
made in a given paper is impossible from sheer citation counts.

B.2 Using Entitymetrics to Measure Scientific and Technological Impact

In this paper, I formalize a new measurement approach based on the notion of knowledge entity
(Ding et al., 2013). I consider any individual carrier of knowledge as an entity, be it embodied into
an artifact (e.g., a piece of computer hardware) or a more abstract unit defined by domain-relevant
taxonomies (e.g., biological entities, such as genes and diseases). Each publication or patent can be



characterized by the knowledge entities it studies and recombines (Fleming, 2001). By taking this
perspective, one can summarize written documents by compiling a list of their knowledge entities. I
propose to assess the technological impact of a paper by quantifying the change in activity experienced
by the knowledge entities “treated” by it. The basic idea is that impactful projects generate interest
and innovation opportunities involving the entities recombined. The increase in patents including
such entity combinations relative to similar control combinations is a measure of impact that has the
advantage of also capturing patents that do not directly cite the focal paper (Nagaraj and Tranchero,
2024).1

More in detail, my approach combines machine learning with causal inference in three steps. First, one
needs to extract knowledge entities from the relevant documents — in the case of science-to-technology
linkages, papers and patents. This can be done using automated machine learning procedures, such as
state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) or Large Language
Models (LLMs).2 BERT can be tailored to specific domains, such as the life sciences, to increase
accuracy and contextual stability (Xu et al., 2020). After extracting accurate knowledge entities using
ML algorithms, one can normalize and assign a unique ID to each. The result is that text documents
will be characterized by a vector of knowledge entities and their combinations.

Second, one can use the union of all knowledge entities extracted from the relevant document corpus to
trace an empirical knowledge landscape (Nagaraj and Tranchero, 2024). The combinatorial landscape
constitutes the “ground truth,” that is, the space of entities over which researchers and firms carry
out their search activities. In some instances, this landscape is known ex ante (e.g., the ~ 19,000
genes constituting the human genome), while in other cases, it can be backed out from the entity
extraction task (e.g., the landscape of research topics described by Boyack et al. 2020). The advantage
of studying research as happening on a landscape is that citations are not needed to track knowledge
evolution (Ding et al., 2013). Instead, one can measure the change in follow-on work relating to the
entities themselves before and after the project of interest is completed.

Finally, one can quantify the impact of a research project using a difference-in-differences framework
with staggered adoption at the level of each entity combination. Said otherwise, combination-level
regressions allow assessing the attention change the entity combination < ¢, j > received after being
treated by the article of interest. The basic specification is at the level of individual combination
< 1,7 > and time ¢ and takes the form of the following equation:

Yi i+ = o+ BPosty x Article; j +vij + 0ie + Wit + €544 (B.1)

1Similarly to my approach, Iaria et al. (2018) trace the diffusion of frontier knowledge measuring the occurrence of new
scientific concepts in patent texts. Suh (2024) extracts the chemical compounds mentioned in the body of patent texts to
recognize innovations that rely more on technologies where the Soviet Union had a scientific lead. More broadly, Kang
(2024), Kao (2023) and Nagaraj (2022) apply the notion of a search landscape when studying pharmaceutical innovation
and gold discoveries, respectively.

2Advances in natural language processing have been used to capture text similarity between documents (Arts et al., 2018;
Kaplan and Vakili, 2015; Younge and Kuhn, 2019). However, these methods have been used to measure the similarity
between patent specifications and not to extract knowledge entities.
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Where Y; ;. is any technological impact metric of interest about the treated entities (e.g., patents,
clinical trials, or other follow-on outcomes), Article; ; equals one for the combinations in the article
and zero for the control ones, Post; is a binary variable that takes value one only after the project
of interest is completed, 7; ; are combination fixed effects, while J,; and w;, are entity-specific time
trends. Combination fixed effects consider the potential of different combinations, while the entity
time trends avoid confounding from heterogeneous changes in attention to individual entities.

The coefficient of interest, 3, captures the marginal impact of the project completion on the treated
entities. Under the assumption of parallel trends in inventive activities between treated and non-treated
entities, this procedure estimates project impact over time that does not depend on patent-to-paper
citations. In particular, it solves the measurement issues highlighted in the previous section. First,
by capturing the mention of entities directly in the text description of the technological application,
this approach is well suited to objectively measure the impact of basic research findings that might
not be cited in downstream applications. Second, tracking the reuse of entity combinations permits
distinguishing different contributions made in the same article, offering a granularity that citations do
not have.

B.3 An Application of Entitymetrics in Pharmaceutical Innovation

The bio-medical sector offers an ideal setting to demonstrate the advantages of entitymetrics. Phar-
maceutical innovation heavily depends on science (Cohen et al., 2002), and knowledge entities are
well-defined by taxonomies and have clear meanings (e.g., genes and diseases). I leverage European
Bioinformatics Institute (EBI) data to measure the gene-disease pairs targeted by each USPTO patent
application (2001-2019). The entities from patent texts are extracted using TERMite, the proprietary
named entity recognition software developed by SciBite.

Example 1: Undermeasurement of Basic Research Influences: The GWAS of Duerr et al. (2006)
was the first to implicate the IL23R gene in the etiology of inflammatory bowel disease (IBD). This
finding has proved incredibly impactful both on scientific research and pharmaceutical innovation.
Duerr et al. (2006) received over 3,800 citations on Google Scholar (as of 2024) and led to an
improved theoretical understanding of how IL23R is involved in IBD (Bianchi and Rogge, 2019). On
the therapeutic front, several drug molecules are now available to treat IBD by modulating the 1L-23
signaling pathways, including ustekinumab and risankizumab (Reay and Cairns, 2021). Therefore,
this offers a perfect case study to compare the ability of patent citations and entitymetrics to capture
the considerable technological impact of this paper.

Figure B.1 shows the time series of USPTO patent applications targeting the IL23R-IBD pathway or
citing the GWAS by Duerr et al. (2006), respectively. A few things are interesting to note. First, some
firms were already exploring the IL23R-IBD nexus before the finding became known in the broader
scientific community (Brusoni et al., 2001). Those firms are then the quickest to react, applying for
patents that were probably already in the making and thus not citing Duerr et al. (2006), but that found
a crucial validation in it (Kao, 2023). Second, it appears that just looking at patent-to-paper citations
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Figure B.1: Count of USPTO patent applications that directly cite Duerr et al. (2006) or that target
the IL23R-IBD combinations, regardless of whether they cite Duerr et al. (2006)

USPTO patent applications

— Mentioning IL23R-IBD

— — Citing Duerr et al. (2006)

Note: Data on patent citations for USPTO patent applications are from Google Patents. The vertical line marks the
publication of Duerr et al. (2006).

would lead to a substantial underestimate of impact. Only 46 patent applications cite Duerr et al.
(2006), compared with the 88 patent applications that exploit its finding. The gap between the two
measurements reduces to half among patents filed by universities and research institutions, suggesting
that most undercount stems from firms’ citation practices.

Direct patent-to-paper citations cannot account for citations to downstream science enabled by Duerr
et al. (2006). For instance, patents might cite subsequent studies that experimentally validated the
IL23R-IBD association (Ahmadpoor and Jones, 2017). Figure B.2 shows a few claims of the US
2016/0333091 A1l patent application by Boehringer Ingelheim. The patent builds on knowledge
of IL23R’s role in IBD without acknowledging the GWAS by Duerr and colleagues, instead citing

Figure B.2: Claims 28, 29, and 30 of patent application US 2016/0333091 Al

28) A method for treating an inflammatory disease, an
autoimmune disease, a respiratory disease, a metabolic
disorder or cancer comprising administering to a subject in
need thereof an effective amount of an anti-1.-23p19 anti-
body or antigen-binding fragment or a pharmaceutical com-
position comprising an anti-IL-23p19 antibody or antigen-
binding fragment and a pharmaceutically acceptable carrier,

wherein the antibody or antigen-binding fragment thereof

comprises:
a) a light chain variable region comprising the amino acid
sequence of SEQ ID NO:19 (CDR1-L); the amino acid
sequence of ID NO:20 (CDR2-L); and the amino
acid sequence of SEQ ID NO:21 (CDR3-L); and

b) a heavy chain variable region comprising the amino
acid sequence of SEQ ID NO: 63, 66, 67 or 68
(CDR1-H); the amino acid sequence of SEQ ID NO:64
(CDR2-H); and the amino acid sequence of SEQ 1D
NO:65 (CDR3-H).

29) The method according to claim 28, wherein the
disease is psoriasis, inflammatory bowel disease, psoriatic
arthritis, multiple sclerosis, rheumatoid arthritis, or ankylo-
sing spondylitis.

30) A method for inhibiting the binding of IL-23 to the
IL-23 receptor on a mammalian cell, comprising adminis-
tering to the cell an anti-IL-23p19 antibody or antigen-
binding fragment, whereby signaling mediated by the IL-23
receptor is inhibited,

Note: This figure shows selected claims of the patent application titled “Anti-IL-23 Antibodies” filed by Boehringer
Ingelheim. The patent does not cite the study of Duerr et al. (2006) even if it builds on its finding; however, it does cite
papers that cite Duerr et al. (2006) in turn.



subsequent papers that explain the mechanisms behind the IL23R-IBD correlation (Beyer et al., 2008).
In sum, the entity-based approach seems better equipped to capture the impact of fundamental advances
triggering extensive follow-on research.

Example 2: Multiple Findings in the Same Paper: Scientific articles often make more than one
contribution. For instance, the GWAS of Easton et al. (2007) reported four new genes as correlated
with breast cancer (Panel A of Figure B.3). What was the individual impact of these four gene-disease
combinations on pharmaceutical innovation? Simply counting how many patents cite this paper would
not answer the question. Aveo Pharmaceuticals’ patent US 2011/0305687 Al, titled “Anti-FGFR2
antibodies,” is a good case in point. This patent cites Easton et al. (2007), and from the title alone, it
is clear that it builds on only one of its four findings. Unfortunately, this information is impossible to
gather from citation patterns alone.

Figure B.3: Knowledge entities permit to measure the impact of multiple discoveries in the same paper

(a) Abstract of the GWAS by Easton et al. (2007) (b) USPTO patent applications after Easton et al. (2007)

nature
Genome-wide association study identifies novel breast
cancer susceptibility loci

Douglas F. Easton &, Karen A. Pooley, Alison M. Dunning, ... Bruce A. J. Ponder
Nature 447, 1087-1093 (2007) | 12k Accesses | 1778 Citations | 48 Altmetric

40

30

Abstract
Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility 20
to the disease. Known susceptibility genes account for less than 25% of the familial risk of
breast cancer, and the residual genetic variance is likely to be due to variants conferring more
moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-

wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third

-

stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in s
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independent loci exhibited strong and consistent evidence of association with breast cancer

(P<107). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSPI).

At the second stage, 1,792 SNPs were significant at the P < 0.05 level compared with an — FGFR2-BC —— TNRC9-BC -~ MAP3K1-BC i LSP1-BC
estimated 1,343 that would be expected by chance, indicating that many additional common

susceptibility alleles may be identifiable by this approach.

Note: The top panel shows the abstract of the GWAS by Easton et al. (2007). The bottom panel shows USPTO patent
applications that target the four findings of the GWAS by Easton et al. (2007). The vertical line marks the publication of
Easton et al. (2007), showing substantial heterogeneity in the impact of individual findings.

My measurement strategy can bypass this limitation by extracting each recombination introduced by
a given article and then relating it to patenting dynamics on the recombination itself. Figure B.3
shows that the GWAS by Easton et al. (2007) triggered substantial patent applications only on the
FGFR2-breast cancer combination. Patenting on this gene-disease combination tripled, with almost no
impact on the other combinations. Relying on patent-to-paper citations would completely obscure the
heterogeneous effect of the GWAS by Easton et al. (2007). This aspect is all the more important since
some of these associations might be false positives. Text-extracted real-world entities are especially
suited to measure the impact of basic research with cumulative impact across disparate domains.



C SciBite/EBI Patent Data

This appendix describes the data on the genes and diseases listed in USPTO patent applications
(2001-2019).

C.1 Sample and Validation

Information on R&D expenditure is usually only available at the organizational level and not for
specific projects. In this paper, I follow the approach of Eggers and Kaplan (2009) and use patent
records to infer where firms are directing their innovation investments. I leverage information about the
genes and diseases mentioned in firms’ patents to learn the projects to which firms devote resources.
Given the length and uncertainty of the pharmaceutical innovation process, patent applications are
better thought of as a byproduct of early-stage investments rather than successful innovations. When a
firm starts patenting in a given domain, it is a good indicator that it is investing in that area. However,
it is important to note that these are not patents on the gene sequence itself (Williams, 2013), which
have been ruled inadmissible by the U.S. Supreme Court with the Myriad ruling. Instead, my sample
considers patents for innovations like genetic tests, new drug molecules, or method-of-use of molecules
that rarget a specific gene to treat a specific disease.

The primary source for the data used in the paper is a proprietary database from the European
Bioinformatics Institute (EBI). The data have been compiled using TERMite (TERM identification,
tagging & extraction), a named entity recognition software developed by the Elsevier-owned startup
SciBite. TERMite scans and semantically annotates raw text with entities from over 50 biopharma
and biomedical topics. The entities are drawn from VOCabs, a manually curated vocabulary with
over 20 million synonyms specifically tuned for named entity recognition text analytics. For instance,
this permits recognizing that SEPT1 is the symbol for the SEPTIN1 gene, not a date. Importantly,
TERMite has built-in relevance detection, distinguishing between terms that are casual mentions and
those that constitute the critical bio-entities of a document.

The data include all the protein-coding genes and diseases extracted from complete patent texts. Genes
are matched to their unique NCBI IDs, while diseases are mapped into MeSH Unique IDs. Figure
C.1 shows how the TERMite software works. The figure shows the USPTO patent application US
2011/0301182 A1, a patent granted on September 30, 2014, to Boehringer Ingelheim. This patent is
listed in the FDA’s Approved Drug Products with Therapeutic Equivalence Evaluations (also known as
Orange Book) as the intellectual property behind Tradjenta, the brand name for Linagliptin. Tradjenta
is a medication used to treat type 2 diabetes by acting as a DPP-4 inhibitor, i.e., by altering the function
of the gene DPP4, which plays a significant role in glucose metabolism. Figure C.1 shows how the
entity-based approach correctly captures that this patent describes a drug targeting the DPP4-diabetes
combination.

I carry out a manual validation to assess the performance of TERMite in terms of recall and precision,
following the procedure of Marx and Fuegi (2020). Recall measures how many actual bio-entities of
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Figure C.1: Example of SciBite’s entity recognition algorithm used to extract genes and diseases
targeted by each USPTO patent application

SEbn US-20110301182-A1
Anatomy Treatment for diabetes in patients with inadequate glycemic control despite metformin therapy
ChEMBL Drug comprising a DPP-IV inhibitor

Company
Drug Type
Gene

vVVYVYVYViy

The present invention relates to the finding that certain | DPP-4 inhibitors are particularly suitable for improving glycemic control in type 2 diabetes patients
with inadequate glycemic control despite metformin therapy.

Indication

Note: This figure shows an example of how SciBite’s entity recognition algorithm (called TERMite) extracts genes and
diseases targeted by the drug disclosed in USPTO patent application US 2011/0301182 A1.

a patent the algorithm found. This is equivalent to one minus the percentage of false negatives, i.e.,
entities mentioned by a patent that the software failed to find. To assess this metric, I sampled 100
patent applications, obtained their full specification from Google Patents, and randomly extracted one
gene and one disease they mentioned. Then, I assessed whether the same entities were listed in my
data for that specific patent, finding that 91% of genes and 92% of diseases were correctly captured.
Symmetrically, precision is given by the share of reported bio-entities that are correct. This metric is
computed as one minus the percentage of false positives, i.e., entities mistakenly extracted from the
patent. I evaluated precision by extracting one gene and one disease for 100 patents in my data and
then manually checking whether the entity in question was present in the patent specification. Overall,
95% of genes and 97% of diseases were true positives. Taken together, the F} score is equal to 92.96
in the case of genes and 94.43 in the case of diseases, proving the high reliability of my data.

C.2 Descriptive Statistics

My sample includes 148,232 USPTO patent applications published from 2001 to 2019 inclusive. Of
these, 73,255 are eventually granted as of summer 2021. All my primary analyses rely on the entire
sample of applications, but I also present descriptive statistics for the subset of granted patents for
comparison. Table C.1 presents the main descriptive statistics. Each patent application mentions,
on average, 6.3 genes and 12.3 diseases; this number is only slightly smaller for granted patents.3
However, the sample shows a large variance, with a few patents listing hundreds of genes and diseases
as targets. This probably reflects strategic disclosure behaviors and offers an exciting avenue for future
research on the conditions under which patent text can or cannot be relied upon to gauge a patent’s
technological content. Finally, the average patent covers 188 gene-disease pairs, primarily due to a
few outliers since the median patent focuses on a much smaller set of 13 gene-disease combinations.

The average number of diseases each patent mentions is roughly constant over my sample period
(Figure C.2), while there seems to be a slightly upward trend in the number of genes appearing in
the patent text. Patents published in the year 2001 seem to reference an abnormally low number of

3This is consistent with evidence showing that patent examiners tend to restrict the scope of patent applications during the
granting process (Marco et al., 2019).
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Table C.1: Descriptive statistics at the patent level.

USPTO patent applications USPTO granted patents
mean  median std min max N mean median std min max N
Genes per patent 6.285 2 31.1786 1 4060 148,232 5.625 2 31.3932 1 4,060 73,255
Diseases per patent 12.257 5 22.5936 1 911 148,232 12.095 5 20.4855 1 853 73,255
Gene-disease pairs per patent 188.416 13 3,671.136 1 318,560 148,232 165.865 12 3645.6 1 289,212 73,255
Year of patent publication 2010.704 2011 5.0519 2001 2019 148,232 2011.062 2011  5.0451 2001 2019 73,255

Note: This table presents descriptive statistics at the level of individual patents in my data. The left part of the table presents descriptives considering all
patent applications, while the right panel presents descriptives considering only applications that eventually result in a granted patent as of 2021. Genes
per patent: count of genes mentioned by the patent; Diseases per patent: count of diseases mentioned by the patent; Gene-disease pairs per patent: count
of gene-disease pairs mentioned by the patent; Year of patent publication: year when the patent specification was published.

bio-entities, possibly because of idiosyncrasies of that specific year (which is the first when patent
applications started to be published and it corresponded to the release of the first draft of the human
genome). Together, the two graphs help rule out structural breaks in disclosure practices that could
potentially bias my measurement approach.

Figure C.2: The average number of genes and diseases mentioned by each USPTO patent application
is relatively constant over time

(a) Average number of genes referenced per patent (b) Average number of diseases referenced per patent
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Note: Panel (a) shows the average number of genes mentioned by each USPTO patent application per year. Panel (b)
shows the average number of diseases (MeSH Unique IDs at level 4) mentioned by each USPTO patent application per
year.

Table C.2 shows the descriptive statistics at the firm level. On average, firms’ patent portfolio
encompass around 64 genes and 41 diseases, but there is significant variation. Some firms span up to
thousands of genes in their R&D efforts, while the median firm explored only 19 genes. The dispersion
in the number of diseases is generally smaller. Interestingly, the table shows that focusing only on
granted patents would lead to missing much of the firms’ exploration in genetic space. This validates
the choice of looking at patent applications to capture the earliest stages of pharmaceutical innovation
and suggests that firms’ competencies are much more comprehensive than what traditional research
can capture (Brusoni et al., 2001). On average, firms are active on 1,437 gene-disease pairs, but the
median firm explored only 162 pairs.
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Table C.2: Descriptive statistics at the firm level.

USPTO patent applications USPTO granted patents
mean median std min max N mean  median std min max N
Genes per firm 64.285 19 195.922 1 5467 4,117 37.637 11 130.255 1 4,579 3,866
Diseases per firm 41.362 27 46.173 1 338 4,117 31.530 17 40.546 1 305 3,866

Gene-disease pairs per firm 1,436.791 162 8,680.241 1 239,160 4,117 842.248 76 5,821.625 1 166,437 3,866
Note: This table presents descriptive statistics at the level of individual firms. The left part of the table presents descriptives considering all patent
applications, while the right panel presents descriptives considering only applications that eventually result in a granted patent as of 2021. Genes per
firm: count of genes mentioned by a firm in its patents; Diseases per firm: count of diseases mentioned by a firm in its patents; Gene-disease pairs per
firm: count of gene-disease pairs mentioned by a firm in its patents.

Finally, I provide some descriptive evidence of how the bio-entities recombined by a patent relate to
common empirical proxies of its value. Simple OLS regressions reveal that the number of diseases is
associated with patents of higher economic value (Table C.3). Innovations targeting more diseases have
higher market value and larger patent family sizes, indicating that the number of potential applications
for a drug is a predictor of its economic value. Instead, the number of genetic targets of a patent
seems to be associated with higher technological impact, as proxied by the number of forward patent
citations received. These patents are also more likely to end up in litigation, confirming the intuition
that they might cover a larger swath of the technological space and block other applications.

Table C.3: USPTO patent applications for innovations targeting multiple diseases have a higher
market value, while USPTO patent applications for innovations targeting multiple genes have a higher
technological impact.

Dependent Variable: Patent family size Market value Patent citations Litigated patent (0/1)
Genes per patent 0.0004 -0.0274 0.04659°%** 0.0004*
(0.00222) (0.03072) (0.01253) (0.00017)

Diseases per patent 0.0329%* 0.1312%* 0.0076 0.0002

(0.01043) (0.06300) (0.02196) (0.00026)
Year of application FE YES YES YES YES YES YES YES YES
N 148,226 148,226 30,019 30,019 148,226 148,226 148,226 148,226
Mean of Dep Var: 10.7969  10.7969  28.8594  28.8594 21.0813 21.0813 0.4366 0.4366

Note: *, ***%* denote significance at 5%, 1% and 0.1% level respectively. Observations at the patent application level.
Std. err. clustered at the assignee level. Genes per patent: count of genes mentioned by a patent application; Diseases per
patent: count of diseases mentioned by a patent application; Patent family size: number of patent applications in the same
patent family; Market value: estimate of the market value (in constant USD) of the patent using data from Kogan et al.
(2017). Note that this measure is available only for applications that are eventually granted, hence the smaller sample size;
Patent citations: number of forward patent citations received by the USPTO patent application up to seven years after its
publication; Litigated patent (0/1): 0/1 =1 if the USPTO patent application is involved in litigation.

C.3 Example: Denali Therapeutics

In 2015, three top researchers left Genentech to start a new company: Denali Therapeutics. Aptly
named after the tallest mountain in North America, Denali focuses on treating and curing neurode-
generative diseases like Alzheimer’s, amyotrophic lateral sclerosis, and Parkinson’s. Based in San
Francisco, the company has raised over $350 million in venture capital and $250 million from its IPO
in 2017. On its website, Denali lists ten compounds at different stages of clinical development as
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of summer 2022. Some of them are being developed together with large pharmaceutical companies,
including Biogen, Sanofi, and Takeda Pharmaceuticals.

Advances in the genetics, pathology, and cell biology underlying chronic neurodegenerative disease
have identified new pathways that trigger neurodegeneration. In particular, researchers have dubbed
“degenogenes” a set of genes that, when mutated, have a likely causative role in neurodegenerative
disease. Denali Therapeutics was founded based on the idea that such degenogenes could constitute a
viable therapeutic avenue to tackle the most common neurodegenerative disorders. The focus of drug
discovery activities on a handful of genetic targets constitutes not only the scientific foundation of this
company but also its key competitive hypothesis for drug development.

In its TPO filings, Denali explicitly listed the key genetic targets that the company decided to focus
on.* This offers an opportunity to test the reliability of the SciBite data, that include ten patent
applications by Denali Therapeutics as of 2019. Two patterns stand out. First, nine out of ten patents
are indeed tagged with Alzheimer’s and Parkinson’s diseases, showing that the data accurately capture
the markets targeted by Denali.> Second, 86.3% of the gene-disease combinations mentioned in its
patents include the two key genes listed in the SEC files: RIPK1 and LRRK?2. The first is a gene with
an essential role in driving cell death and inflammation, and Denali was the first company to establish
the safety of inhibiting RIPK1 kinase activity in humans with a Phase 1 clinical trial (Mifflin et al.,
2020); the latter is a gene whose mutations increase the risk of developing Parkinson’s disease, and
Denali is leading the way in showing how it can be used for drug targeting (Kingwell, 2022). This
example shows the potential of using bio-entities to capture a company’s technological portfolio.

“The list of genetic pathways and genes targets is at page 3 of the following link: https://www.sec.gov/Archives/Denali
5The tenth patent generically addresses lysosomal storage disorders. However, this is also consistent with the IPO filings
of Denali: the lysosomal system is associated with several neurodegenerative diseases, including Parkinson’s.
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D Other Data Sources

The present appendix provides additional details and descriptive statistics about the other data used in
this study.

D.1 The NHGRI-EBI GWAS Catalog

Information about genome-wide association studies is from the GWAS Catalog, a publicly available
list of all published GWAS and association results (MacArthur et al., 2017). The Catalog includes
all eligible GWAS studies since the first published in 2005, with details about associations with a
high statistical significance (p-value < 1.0 x 10~°) (Marigorta et al., 2018). Compiling this resource
requires manual curation of a large body of diverse and unstructured data from the literature, a task
carried out by scientists at the European Bioinformatics Institute (EBI) with the support of the National
Human Genome Research Institute Home (NHGRI). Catalog data are routinely used by biologists,
bioinformaticians, and researchers aiming to translate scientific findings to medical applications and
establish targets for novel therapies.

Table D.1: Descriptive statistics of GWAS papers that introduce a gene-disease association involving
protein-coding genes

mean median std min max N
Genes 7.848 3 25.849 1 522 1,259
Diseases 2.053 2 1.335 1 12 1,259
New gene-disease associations 14.269 4 36.276 1 522 1,259
Sample size 104,582.80 11,348 22442440 41 1,474,097 1,259
Replication sample (0/1) 0.639 1 0.48 0 1 1,259
Top journal (0/1) 0.314 0 0.464 0 1 1,259
High status PI (0/1) 0.261 0 0.439 0 1 1,259
Co-author industry (0/1) 0.218 0 0.413 0 1 1,259
Scientific citations 138.258 51 311.392 0 6,244 1,259
Cited by clinical trials (0/1) 0.57 1 0.495 0 1 1,259
Patent citations 1.221 0 7.459 0 226 1,259
Year 2015.823 2017 2.979 2005 2019 1,259

Note: This table presents descriptive statistics of GWAS that introduce new gene-disease associations involving protein-coding genes. Genes:
number of protein-coding genes associated with a disease in the GWAS; Diseases: number of diseases studied in the GWAS; New gene-disease
associations: number of new gene-disease associations introduced by the GWAS; Sample size: total number of subjects involved in the GWAS;
Replication sample (0/1): 0/1 = 1 for associations reported in GWAS that include also a replication analysis of their result; Top journal (0/1):
0/1 = 1 for associations published in the 15 most prestigious genetics journals or the top 3 generalits scientific journals (Science, Nature, PNAS).
High status PI (0/1): 0/1 = 1 for GWAS whose last author is affiliated with one of the 20 most prestigious universities according to the QS World
University Rankings for the biological sciences; Co-author industry (0/1): 0/1 = 1 for GWAS with at least one industry co-author; Scientific
citations: count of scientific citations received by the GWAS (data from NIH ICite); Cited by clinical trials (0/1): 0/1 = 1 if the GWAS has
received at least one citation from a clinical trial (data from NIH ICite); Patent citations: count of USPTO patent citations received by the GWAS
(data for granted patents from Marx and Fuegi 2020); Year: year of publication of the GWAS.

Each entry of the GWAS Catalog includes details about the PubMed ID of the paper and the list of
associated genes and diseases. Genes are identified by their NCBI IDs, while diseases are mapped into
the Experimental Factor Ontology (EFO). I use the crosswalk available on the EFO website to map
each disease into the corresponding MeSH Unique IDs. Note that the National Library of Medicine’s
MeSH semantic keyword tree is a hierarchical tree with 13 levels of increasing specificity. For this
study, I map each GWAS to the fourth level of the MeSH tree. If a more specific disease was matched
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Figure D.1: Publication of GWAS and introduction of new gene-disease associations by year, 2000-
2019

(a) Yearly GWAS introducing new gene-disease associations (b) New gene-disease associations introduced by GWAS
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Note: Panel (a) shows the number of GWAS introducing at least one novel gene-disease association that involves a
protein-coding gene, both by year and cumulatively over the sample period (2000-2019). Panel (b) shows the number
of new gene-disease associations involving a protein-coding gene, both by year and cumulatively over the sample period
(2000-2019).

(i.e., at level 5 or above), I assigned it to its parent branches up to level 4. Vice versa, if the disease
matched was coarser (i.e., at level 3 or below), I assigned the finding as about all its descending level
4 branches. This procedure permits harmonizing GWAS as uncovering gene-disease associations in a
landscape of NCBI IDs (unique genes) and level-4 MeSH IDs (unique diseases).

Table D.1 presents the descriptive statistics of the 1,259 GWAS papers that introduce new gene-disease
associations (i.e., what constitutes the “treatment” in the primary analysis of the paper).® The average
GWAS targets two diseases and uncovers 14 associations. However, considerable variability exists,
with a few GWAS finding associations with up to 522 genes. Around 64% of the GWAS include
a replication sample within the same paper, which is considered a best practice to reduce the risk
of spurious results. Around a quarter of studies are carried out by principal investigators affiliated
with high-status institutions, and little over a fifth includes an industry co-author. The average GWAS
receives 138.3 scientific citations, 1.2 patent citations and has a 57% chance of being cited as the
scientific background for a clinical study. Figure D.1 shows the time series of GWAS publications and
the arrival of new gene-disease associations. While the number of studies stabilized around 2010, the
number of associations reported keeps growing, possibly due to increased sample sizes that allow for
more statistically powered analyses (Goldstein, 2009).

6The GWAS Catalog contains information on many more GWAS. This paper focuses on GWAS that introduce associations
new to the world, but I use information from subsequent GWAS to code the replicability of these findings.
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D.2 Open Targets Score

The Open Targets Platform is a public-private partnership that aims to provide evidence for identi-
fying and prioritizing drug targets, one of the fundamental challenges in developing new medicines
(Ochoa et al., 2023). Open Targets collects all the available evidence on the strength of gene-disease
associations and summarizes it in an open-source synthetic score (Figure D.2 shows an example). To
contextualize the relative importance of different pieces of evidence, Open Targets weights documen-
tation on a gene-disease pair according to a scoring framework for each data source. All evidence is
then mapped to the genetic target (NCBI Gene identifiers, which I merge to NCBI IDs) and disease
(Unique MeSH IDs, which I harmonize to level-4 MeSH IDs). The Open Targets team also makes
sure to minimize the presence of duplicates within the same data source. For this paper, I focus only
on the Open Targets score aggregating direct evidence on the gene-disease relationship.”

Figure D.2: Example of Open Targets Platform’s synthetic score for the genes associated with Crohn’s
disease

Qg Crohn's disease
EFO: EF0_0000384 [[MeSH: D003424]| UMLS: CN043071

Associated targets (eI

5793 targets associated with Crohn's disease

Symbol

noo: I N S
wize | I
|

TNF

ITGB7

Note: This figure shows an example of how the Open Targets Platform the available evidence on the strength of genetic
associations with Crohn’s disease and summarizes them in an open-source synthetic score.

The Open Targets score is available for 594,353 gene-disease pairs (8% of my sample), spanning
17,437 genes and 366 diseases. However, one must take into consideration some potential limitations.
Open Targets scores partially reflect data availability about a given gene-disease pair. This means
that under-studied genes or diseases are unlikely to produce high-scoring associations simply due to
the lack of available evidence. Vice versa, not all pairs with available evidence can be considered
legitimate genetic targets. These limitations explain why I use the replicability of a GWAS finding
to find false positives and not the value of the Open Target Score, which could confound the interest
in the association with its actual underlying therapeutic value. These limitations notwithstanding, the
Open Targets score provides a valuable measure to rank the relative strength of genetic targets within
a given disease.

"The Open Targets Platform also provides scores that consider indirect evidence using the properties of the EFO disease
ontology. However, this evidence is considered less robust (Ochoa et al., 2023).
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Table D.2: Patent applications for innovations targeting gene-disease pairs with higher Open Target
scores are of higher technological and economic value

Dependent Variable: Patent citations Patent family size Market value

Max(OT score) 4.6822  7.7646%  3.8489%** 1.6012*** 14.7768** 4.0955*
(3.4223) (3.10934) (0.36592) (0.31473)  (4.7530) (2.0507)

Patent year FE YES YES YES YES YES YES
Firm FE NO YES NO YES NO YES
N 137,614 137,614 137,614 137,614 27,213 27,213
Mean of Dep Var: 26.063 26.063 11.081 11.081 30.365 30.365

Note: *, ** *** denote significance at 5%, 1% and 0.1% level respectively. Observations at the patent application level. Std. err. clustered
at the patent assignee level. Max(OT score): maximum value of the Open Target score reached by any gene-disease pair mentioned in a
patent application; Patent citations: number of forward patent citations received by the USPTO patent application up to seven years after
its publication; Patent family size: number of patent applications in the same patent family; Market value: estimate of the market value (in
constant USD) of the patent using data from Kogan et al. (2017); note that this measure is available only for applications that are eventually
granted, hence the smaller sample size.

Table D.2 shows that targeting gene-disease pairs with a higher Open Target score has a technologically
and economically significant effect on outcomes. Across the board, there is a strong correlation between
patent applications for inventions targeting gene-disease combinations with higher Open Target scores
and traditional metrics of patent value. In particular, the highest value reached by the Open Target
score of the combinations in a patent application correlates with the number of forward patent citations
when including assignee fixed effects. Open Target scores also predict the higher economic value
of the patents, as captured by the dimension of the patent family and the monetary value of granted
patents (using data from Kogan et al. 2017).

D.3 PubTator Central Publication Data

Data on the genes and diseases studied in each scientific publication are taken from PubTator Central,
a web-based tool that automatically annotates biomedical concepts in PubMed abstracts and text (Wei
et al., 2019). Articles are processed through concept taggers and disambiguation dictionaries to
resolve annotation conflicts. The results of this process are publicly available online and include over
29 million abstracts and 3 million full-text documents. The entities extracted are matched to unique
identifiers from NCBI and MeSH. The F1 score for the entity extraction pipeline is 86.70%

The coverage of authors’ affiliations in PubMed is low and includes only the first author for papers
published before 2013. To address this shortcoming, I obtain proprietary information on the authors’
affiliations from Dimensions, a data product by Digital Science (Herzog et al., 2020). Compared
to PubMed, whose recording of authors’ affiliations is often limited to the corresponding author,
Dimensions has much broader coverage. I use these data to match each patenting firm in my sample to
their publication portfolios using fuzzy string matching on the firm names. Then, thanks to PubTator
Central, I record all the genes and diseases studied by the firms. Finally, I use NIH’s iCite data to
collect additional bibliometric information, including the translational focus of each article and its
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impact on clinical development.

Table D.3: Descriptive statistics of firms’ publication portfolios

mean median std min max N
Publications 59.170 9 390.944 1 10,656 3,346
Genes 176.563 52 568.922 1 12,267 3,346
Diseases 109.239 65 156.608 1 1,876 3,346
Gene-disease pairs 5,507.258 923 27,322.490 1 545,193 3,346
Year 2012.97 2014 4.672 1985 2019 3,346

This table presents descriptive statistics of firms’ publication portfolios (conditional on having at least one publication). Publications:
average number of firm publications; Genes: average number of genes on which the firm has published; Diseases: average number
of diseases on which the firm has published; Gene-disease pairs: average number of gene-disease pairs on which the firm has
published; Year: average year of the publications.

Table D.3 shows the descriptive statistics of the resulting dataset. 3,346 of the 4,117 firms in my
sample (81.3%) have at least one publication. Each publishing firm has, on average, 59 papers about
177 genes and 109 diseases. The median firm has performed basic research on 923 gene-disease
pairs. I then follow the approach of Azoulay et al. (2021) and classify as “translational research”
disease-oriented studies that try to apply bench science findings to practical therapies but without
being clinical trials. More specifically, I code articles that both mention a disease and are tagged with
MeSH terms for molecular biology techniques and model organisms. I do so using data from NIH’s
iCite database. Intuitively, firms with translational experience can evaluate findings based on their
theoretical understanding of basic genetics principles.

Table D.4 reports suggestive cross-sectional evidence that having domain knowledge on a specific
gene (as proxied by past publications) correlates to firm patents of higher technological and economic

Figure D.3: The average therapeutic value of gene-disease combinations mentioned by a patent is
higher when involving genes on which the firm has published before
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Note: This figure shows a binscatter plotting the association between the average Open Target score of gene-disease pairs
mentioned in a USPTO patent application and the share of those pairs that include a gene the firm has previously studied.
Both publication counts and Open Targets scores are residualized by firm-disease fixed effects.
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Table D.4: Patent applications are of higher value when they target gene-disease pairs involving genes
where the firm has published before

Dependent Variable: Patent citations Patent family size Market value

Has gene knowledge (share) -0.1496  8.0016* 4.0945%** 0.9079*** 24.77607**  0.488
(3.1426) (3.2385) (0.6110) (0.2152) (7.8265)  (1.0171)

Patent year FE YES YES YES YES YES YES
Firm FE NO YES NO YES NO YES
N 134,459 134,330 134,459 134,330 26,498 26,329
Mean of Dep Var: 26.166  26.166 11.107 11.107 30.527 30.527

Note: *, ** *## denote significance at 5%, 1% and 0.1% level respectively. Observations at the patent application level. Std. err. clustered at the patent
assignee level. Has gene knowledge (share): share gene-disease pairs mentioned in a patent that involve genes where the firm has published before;
Patent citations: number of forward patent citations received by the USPTO patent application up to seven years after its publication; Patent family size:
number of patent applications in the same patent family; Market value: estimate of the market value (in constant USD) of the patent using data from
Kogan et al. (2017); note that this measure is available only for applications that are eventually granted, hence the smaller sample size.

value. The only partial exception is market value, where the effect vanishes after including firm fixed
effects. However, this is likely due to how the measure of value is constructed from firms’ stock
market fluctuations, which does not allow for the detection of within-firm differences in patent value
(Kogan et al., 2017). Finally, Figure D.3 shows a binscatter plotting the relationship between the
average Open Target score of gene-disease pairs referenced in a USPTO patent application and the
share of those pairs that include a gene that the firm has previously studied. The figure shows that
the average therapeutic value of gene-disease combinations targeted by a patented innovation is higher
when involving genes on which the firm has published before.

D.4 Cortellis Drug Data

I obtained drug development records up to July 2020 from Cortellis, which contains development
information for 42,896 drugs targeting at least one of the gene-disease pairs in my sample. Cortellis
aggregates information from various sources to assemble a list of historical development milestones
for each drug molecule. This paper’s analyses use those milestones to construct complete drug de-
velopment histories for each drug whose genetic target and disease indication are recorded (Krieger,
2021). In particular, I focus on new molecules observed entering the earliest phases of drug develop-
ment (what Cortellis records as the “discovery phase” and the “pre-clinical phase”). This choice is
motivated by the short time lag from the first GWAS and the length of the drug development process,
which means that it is still too early to observe drug approvals. In additional analyses reported in the
main text, I follow the approach of Dranove et al. (2022) and weigh each drug by its relative novelty.
The basic intuition of this weighting is that the higher the number of previous drugs that adopted the
same molecular-targeting design, the less scientifically novel the drug is.

Table D.5 confirms the intuition that gene-disease combinations with at least one drug molecule have
received more investments, as proxied by patent applications. Pairs with successful drug discovery
activities appear in 112 patent applications and 2,176 publications, while the others only receive 2
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patents and 47 publications on average. Interestingly, the difference is much lower when measured
using the Open Target Score. This suggests that research and development inputs might dispropor-
tionally target gene-disease pairs known to be druggable but potentially miss out on other therapeutic

opportunities (Oprea et al., 2018; Stoeger et al., 2018).

Table D.5: Descriptive statistics for gene-disease pairs with clinical activity.

Gene-disease pairs with drugs

Gene-disease pairs without drugs

mean median std min max N

mean  median std min max N
Patents on GDA 112.463 25 319.223 0 13,900 13,582
Publications on GDA 2,175.96 425 6,192.69 0 173,306 13,582
Open Targets score 0.099 0.025 0.158  0.00005 0.897 9,782

2.289 0 19.631 0 8,133 7,210,342
47.250 2 424.712 0 98,941 7,210,342
0.039  0.007 0.085 0.00004 0.874 584,571

Note: This table presents descriptive statistics at the level of gene-disease pairs. The left part of the table presents descriptives considering only pairs with
at least one drug molecule listed in the Cortellis data, while the right panel presents descriptives considering only pairs that do not have drug molecules
listed in the Cortellis data as of July 2020. Patents on GDA: average count of patents for inventions targeting the gene-disease pair; Publications on
GDA: average count of publications mentioning the gene-disease pair; Open Targets score: average Open Targets score of the gene-disease pair.
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E Additional Figures and Tables

Figure E.1: While there is clear evidence of temporal sorting on the diseases that receive a GWAS,
the same is not true for genes

(a) Average past patents on the diseases by year of their first
GWAS
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(b) Average past patents on the genes by year of their first GWAS
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Note: Panel (a) shows the average number of patent applications mentioning each disease before 2005, separately by the
year when the disease first appeared in a GWAS. Panel (b) shows the average number of patent applications mentioning
each gene before 2005, separately by the year when the gene first appeared in a GWAS. The figure shows that diseases that
received a GWAS earlier in time tend to be those with higher pre-GWAS patenting activity, confirming the prioritization

of large and important diseases. Reassuringly, the same type of selection is not apparent for genes due to the research
design of GWAS.
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Figure E.2: The timing of GWAS associations is not related to past patenting on gene-diseases pairs,
once controlling for disease selection
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Note: These figures show the correlation between patent applications mentioning one of the 17,965 treated gene-disease
pairs before 2005 and the year of the first GWAS association reporting them. Panel (a) presents the raw scatterplot. Panel

(b) shows the same scatterplot after residualizing for disease. This figure confirms that gene-disease associations reported
by GWAS are a plausibly exogenous shock.

Figure E.3: Schema of the between-firms research design used for gene-disease level analyses
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Note: This figure exemplifies the between-firm design used to assess the role of domain knowledge in gene-disease level
regressions. Some firms evaluating the plausibility of a GWAS association can leverage their previous research on the
gene involved, thus improving their assessment thanks to a deeper understanding of the gene’s biology.
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Figure E.4: Firms react less to the arrival of GWAS associations when they possess domain knowledge,
regardless of their size
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Note: The figure reports OLS coefficients capturing the main effect of GWAS on USPTO patent applications, separately
by firms with and without previous publications on the gene involved. Each coefficient is estimated with the same
specifications reported in Table 4. Panel (a) reports the two estimates for small firms, defined as the ones with a below-
median number of patents in my samples. Panel (b) reports the two estimates for large firms, defined as the ones with an
above-median number of patents in my samples.

Figure E.5: Average increase in patent applications on treated gene-disease pairs, by type of firm
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Note: This figure shows the average increase in USPTO patent applications on a gene-disease pair after the publication of
a GWAS (considering only treated pairs). The increase is presented separately for GWAS findings that are not replicated
in subsequent studies and those that are confirmed by later GWAS. The first two columns report the patenting increase by
firms with previous publications on the gene involved, while the latter two columns report the patenting increase by firms
without them.
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Figure E.6: A within-firm research design confirms that domain knowledge improves the assessment
of GWAS predictions and helps to select only the opportunities with higher Open Target scores

(a) Schema of the within-firm research design
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Note: Panel (a) exemplifies the within-firms design to isolate the role of domain knowledge in interpreting GWAS and
determining performance. The research design exploits the fact that a firm might be evaluating multiple findings for the
same disease, but has done genetic research only on a subset of the genes involved. Panel (b) shows coefficients from
split-sample regressions evaluating the within-firm impact of genetic knowledge on firms’ ability to recognize the best
GWAS findings. The ground truth quality of the gene-disease association uncovered by GWAS is proxied by the percentile

of the Open Targets score. The regressions include firm x disease and year of discovery dummies.

Table E.1: No evidence of association between past patenting and the timing of the first GWAS for

treated gene-disease pairs

Dependent Variable:

Year of first GWAS

Patents about gene

Patents about gene-disease

Disease FE

Gene FE

N of obs

Mean of Dep Var:

-0.007 -0.014

[-0.65] [-1.87]
-0.040* -0.020
[-2.31] [-1.40]

NO YES NO YES
NO NO YES YES
17,925 17,923 16,338 16,298
2015.8 2015.8 2015.8 2015.8

Note: *, ***#% denote significance at 5%, 1% and 0.1% level respectively. Observations at the
gene-disease association level. Std. err. clustered two-ways at the disease and gene level. This table
shows standardized beta coeflicients to ease comparison and reports t-values inside square brackets.
Year of first GWAS: the year when the gene-disease pair was first reported as significant in one GWAS
paper. Patents about gene: sum of USPTO patent applications filed before 2005 that mention a
specific gene. Patents about gene-disease: sum of USPTO patent applications filed before 2005 that

mention a specific gene-disease pair.
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Table E.2: GWAS findings that are subsequently replicated involve gene-disease pairs with a higher

Open Targets score

Dependent Variable: Open Targets score Top 90%ile OT score (0/1)
Replicable association (0/1) 0.0937#%* 0.0457*** 0.1909%**  (0.1139%***
(0.00900)  (0.00645) (0.01895) (0.01442)
Gene FE YES YES YES YES
Disease FE YES YES YES YES
Year of GWAS FE YES YES YES YES
Sources Count FE NO YES NO YES
N of GDAs 16,298 8,921 16,298 8,921
Mean of Dep Var: 0.0894 0.0894 0.0998 0.0998

Note: *, ** *** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease association level.
Std. err. clustered at the gene level. Open Targets score: value of the Open Targets score of the gene-disease pair. Top 90%ile OT
score: 0/1 = 1 if the gene-disease pair is in the top decile of Open Targets score in my sample of GWAS associations. Replicable
association: 0/1 = 1 if the gene-disease association is replicated by subsequent GWAS about the same disease. Sources Count
FE: number of sources aggregated by Open Targets to compute the score of a given gene-disease pair.

Table E.3: Correlates of replicable GWAS findings: study design quality.

Dependent Variable: Replicable association (0/1)
Large sample (0/1) 0.3197***
(0.02069)
Replication sample (0/1) 0.2192%%*
(0.01811)
Powerful genotyping array (0/1) 0.0993#**
(0.02237)
Disease FE YES YES YES
Year of GWAS FE YES YES YES
N of GDAs 17,923 17,923 16,161
Mean of Dep Var: 0.1574 0.1574 0.1574

Note: *, *#* #¥* denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease
association level. Std. err. clustered at the gene level. Replicable association: 0/1 = 1 if the gene-disease
association is replicated by subsequent GWAS about the same disease. Large sample: 0/1 = 1 for associations
published in studies with a sample size larger than the median GWAS in my sample. Replication sample:
0/1 = 1 for associations reported in papers that also include a replication analysis of their result. Powerful
genotyping array: 0/1 = 1 if the gene-disease association is obtained using a microarray with an above-median

number of SNPs.
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Table E.4: Correlates of replicable GWAS findings: citations to the article introducing them.

Dependent Variable: Replicable association (0/1)

Scientific citations to GWAS 0.0002%%**

(0.00003)

Clinical citations to GWAS 0.0077%**

(0.00259)
Share of negative citations -0.0488**

(0.01525)

Disease FE YES YES YES
Year of GWAS FE YES YES YES
N of GDAs 17,923 17,923 13,732
Mean of Dep Var: 0.1574 0.1574 0.1574

Note: *, ***** denote significance at 5%, 1% and 0.1% level respectively. Observations at the
gene-disease association level. Std. err. clustered at the gene level. Replicable association: 0/1 = 1
if the gene-disease association is replicated by subsequent GWAS about the same disease. Scientific
citations to GWAS: number of citations from scientific papers received by the GWAS introducing
the gene-disease association. Clinical citations to GWAS: number of citations from clinical trials
received by the GWAS introducing the gene-disease association. Share of negative citations: share
of citations with a negative tone from scientific papers received by the GWAS introducing the gene-
disease association (data from Scite).

Table E.5: Firms increase their investments more when the associations are statistically stronger or
the GWAS have better research designs

Dependent Variable: USPTO patent applications
Post x GWAS 0.0432%* 0.0779%**  0.0581%**  (.0828*** 0.0432%*
(0.02019) (0.02019) (0.01815) (0.01809) (0.01871)
...x High P-value (0/1) 0.2455%**
(0.03989)
...x Large effect (0/1) 0.1970%**
(0.042406)
...x Top journal (0/1) 0.292%#%
(0.04810)
...x Large sample (0/1) 0.1830%***
(0.04271)
...x Replication sample (0/1) 0.2449%**
(0.04007)
Gene-Disease FE YES YES YES YES YES
Disease-Year FE YES YES YES YES YES
Gene-Year FE YES YES YES YES YES
N 137,254,556 137,254,556 137,254,556 137,254,556 137,254,556
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 0.1314 0.1314 0.1314 0.1314 0.1314

Note: *, ** *** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at the disease and gene level. USPTO
patent applications: count of USPTO patent applications filed in a given year for innovations that target a specific gene-disease combination. Post X GWAS: 0/1 = 1 in all years after a
gene-disease pair is treated by its first GWAS. High P-value: 0/1 = 1 for associations with a p-value larger than the median GWAS in my sample. Large effect: 0/1 = 1 for associations with
an effect size larger than the median GWAS in my sample. Top journal: 0/1 = 1 for associations published in the 15 most prestigious genetics journals or the top 3 generalist scientific
journals (Science, Nature, PNAS). Large sample: 0/1 = 1 for associations published in studies with a sample size larger than the median GWAS in my sample. Replication sample: 0/1 = 1
for associations reported in papers that include also a replication analysis of their result.
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Table E.6: Firms with genetic domain knowledge introduce new drugs on true positive GWAS findings,
while firms lacking domain knowledge miss these opportunities

Dependent Variable: New drugs by...
...firms with ..firms w/out
gene knowledge gene knowledge
Post x GWAS 0.000113 -0.0000653 0.000221 -0.0000121
(0.0000691) (0.0000384) (0.0001569) (0.0001093)
...x True Positive 0.000892%*%* 0.0011658
(0.0003058) (0.0006582)
Gene-Disease FE YES YES YES YES
Disease-Year FE YES YES YES YES
Gene-Year FE YES YES YES YES
N 137,254,556 137,254,556 137,254,556 137,254,556
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 0.0000138  0.0000138 0.0000827 0.0000827

Note: *, ** *#* denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at
the disease and gene level. New drugs: number of molecules on a gene-disease combination entering the discovery stage (data from Cortellis); the count is
then divided between firms with and without previous publications on the gene. Post X GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its
first GWAS. True Positive: 0/1 = 1 for GWAS findings that are later replicated by another GWAS about the same disease.

Table E.7: Firms without domain knowledge struggle more to recognize opportunities when the GWAS
association involves less-studied genes

Dependent Variable: USPTO patent applications by...

...firms with ...firms w/out

... all firms gene knowledge  gene knowledge

Post x GWAS 0.0123%* 0.0024** 0.0099*
(0.00462) (0.00092) (0.00431)
...X True Positive 0.0265 0.0202%* 0.0063
(0.01458) (0.00876) (0.00891)
Gene-Disease FE YES YES YES
Disease-Year FE YES YES YES
Gene-Year FE YES YES YES
N 66,980,776 66,980,776 66,980,776
N of Gene-Diseases 3,525,304 3,525,304 3,525,304
Mean of Dep Var: 0.02097 0.00072 0.02026

Note: *, **#*#* denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err.
clustered two-ways at the disease and gene level. USPTO patent applications: count of USPTO patent applications filed in a given year
that target a specific gene-disease combination; the count is then divided between firms with and without previous publications on the
gene. Post x GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS. The sample is restricted to gene-disease
pairs involving genes that received a below-median number of scientific studies before 2005 (the year of the first GWAS).
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Table E.8: Firms without domain knowledge invest proportionally less in false positives when the
GWAS report a smaller number of associations

Dependent Variable: USPTO patent applications by...

...firms with ...firms w/out

... all firms gene knowledge  gene knowledge

Post x GWAS 0.0670** 0.01935 0.04768%**
(0.02019) (0.00982) (0.01385)
...xX True Positive ~ 0.6382%%** 0.1535%* 0.484 8%
(0.10028) (0.05037) (0.07703)
Gene-Disease FE YES YES YES
Disease-Year FE YES YES YES
Gene-Year FE YES YES YES
N 137,084,183 137,084,183 137,084,183
N of Gene-Diseases 7,214,957 7,214,957 7,214,957
Mean of Dep Var: 0.13088 0.03741 0.09346

Note: *, ** *#* denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered
two-ways at the disease and gene level. USPTO patent applications: count of USPTO patent applications filed in a given year that target
a specific gene-disease combination; the count is then divided between firms with and without previous publications on the gene. Post X
GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS, excluding studies that report an above-median number
of associations (i.e., larger than 55).

Table E.9: Results are robust to the exclusion of GWAS with an industry co-author or that acknowledge
funding from a pharmaceutical firm

Dependent Variable: USPTO patent applications by...
all firms ..firms with ..firms w/out
gene knowledge gene knowledge
Post x GWAS 0.1263***  0.0669*** 0.0319%* 0.0148 0.0944%**  (.0522%*%*
(0.02182) (0.01856) (0.01146) (0.00979) (0.01328) (0.01165)
...x True Positive 0.4433%** 0.1278* 0.3155%***
(0.11117) (0.05833) (0.06512)
Gene-Disease FE YES YES YES YES YES YES
Disease-Year FE YES YES YES YES YES YES
Gene-Year FE YES YES YES YES YES YES
N 137,167,422 137,167,422 137,167,422 137,167,422 137,167,422 137,167,422
N of Gene-Diseases 7,219,338 7,219,338 7,219,338 7,219,338 7,219,338 7,219,338
Mean of Dep Var: 0.1308 0.1308 0.0373 0.0373 0.0934 0.0934

Note: *, ** #¥% denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at the disease and gene level. USPTO
patent applications: count of USPTO patent applications filed in a given year that target a specific gene-disease combination; the count is then divided between firms with and without previous
publications on the gene. Post X GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS, excluding all GWAS with either a co-author working in a pharmaceutical
company or acknowledging financial support from private firms. True Positive: 0/1 = 1 for GWAS findings that are later replicated by another GWAS about the same disease.
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Table E.10: Investments in false positive GWAS findings seem not driven by strategic considerations,
but follow patterns consistent with firms making mistakes

. Strategic Continuation Litigated Expired
Dependent Variable patent (%)/ 1)  patent (0/1) paten% (0/1) pater?t (0/1)
Post x GWAS 0.0006 0.0094%** 0.0022 -0.0039%**
(0.00046) (0.00139) (0.00119) (0.00072)
...X True Positive  0.0089%**%* 0.0306%** 0.0186%**  -0.0095%**
(0.00172) (0.00381) (0.00340) (0.00236)
Gene-Disease FE YES YES YES YES
Disease-Year FE YES YES YES YES
Gene-Year FE YES YES YES YES
N 137,254,556 137,254,556 137,254,556 137,254,556
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 0.0023 0.0339 0.0282 0.0100

Note: *, **##% denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered
two-ways at the disease and gene level. Strategic patent: 0/1=1 if the gene gene-disease combination received at least one strategic patent according
to the definition by Abrams et al. (2018). Continuation patent: 0/1=1 if the gene gene-disease combination received at least one continuation patent
according to the definition by Righi and Simcoe (2023). Litigated patent: 0/1=1 if the gene gene-disease combination received at least one patent
that was subsequently involved in litigation. Expired patent: 0/1=1 if the gene gene-disease combination received at least one patent that was not
subsequently renewed. Post x GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS. True Positive: 0/1 = 1 for GWAS
findings that are later replicated by another GWAS about the same disease.

Table E.11: No evidence of innovation spillovers on gene-disease pairs proximate to those treated by
false positive GWAS associations

Dependent Variable: Cit-weighted patents Patent market value Drugs (total) Drugs (weighted)

Post x GWAS Spillover 0.2206 -0.0361 -0.000049 -0.000005
(0.21480) (0.05840) (0.00006) (0.00002)

Gene-Disease FE YES YES YES YES

Disease-Year FE YES YES YES YES

Gene-Year FE YES YES YES YES

N 136,913,221 136,913,221 136,913,221 136,913,221

N of Gene-Diseases 7,205,959 7,205,959 7,205,959 7,205,959

Mean of Dep Var: 7.0851 0.6229 0.0002 0.0001

Note: *, ** *** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at the
disease and gene level. Post X GWAS Spillover: 0/1 = 1 in all years after a neighboring gene-disease pair is treated by its first GWAS; neighbor pairs are defined
as involving the same gene and a disease sharing the same 3-digit patent MeSH code than the ones in the GWAS. Cit-weighted patents: count of USPTO patent
applications filed in a given year that target a specific gene-disease combination, weighted by the number of patent citations received up to seven years after
patent publication. Patent value: estimated stock market value (in constant USD) of patents granted to public firms using data from Kogan et al. (2017). Drugs
(total): number of molecules on a gene-disease combination entering the discovery stage. Drugs (weighted): number of molecules on a gene-disease combination
entering the discovery stage weighted by their scientific novelty (i.e., by the number of times that the same mechanism of action has been used before, following
Dranove et al. 2022).
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Table E.12: Firms with domain knowledge invest proportionally more on higher-quality gene-disease
combinations

Dependent Variable: USPTO patent applications by...
..firms with gene knowledge ...firms w/out gene knowledge

Post x GWAS 0.0061 0.087 1% 0.1334%* 0.0919* 0.1793 % 0.1833**

(0.01962) (0.02619) (0.04119) (0.04219) (0.03463) (0.05579)
Gene-Disease FE YES YES YES YES YES YES
Disease-Year FE YES YES YES YES YES YES
Gene-Year FE YES YES YES YES YES YES
N 588,069 9,550,920 1,091,265 588,069 9,550,920 1,091,265
N of Gene-Diseases 30,951 502,680 57,435 30,951 502,680 57,435
Mean of Dep Var: 0.0607 0.3359 0.5363 0.194 0.5944 0.8484
Sample: <10 OT Score 10 <OT Score <90 >90 OT Score <10 OT Score 10 <OT Score <90 >90 OT Score

Note: *, ** *** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at the disease and gene level. The sample is
limited to gene-disease pairs for which an Open Targets Score could be matched. Columns 1 and 4 include only gene-disease pairs with an Open Targets Score below the tenth percentile of the
sample. Columns 2 and 5 include only gene-disease pairs with an Open Targets Score between the tenth and the ninetieth percentile of the sample. Columns 3 and 6 include only gene-disease pairs
with an Open Targets Score above the ninetieth percentile of the sample. USPTO patent applications: count of USPTO patent applications filed in a given year that target a specific gene-disease
combination; the count is then divided between firms with and without previous publications on the gene. Post X GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first true
positive GWAS.

Table E.13: Genetic domain knowledge allows recognizing both false and true positive GWAS asso-
ciations in a within firm-design, ruling out that the effects are due to generic firm-level capabilities

Dependent Variable: Sum of USPTO patent applications

Sample: False positive associations True positive associations

Has Gene Knowledge (0/1) -0.1297#%*%  -0.1330%**  0.1944%**  (0.1996%**
(0.01525) (0.01441)  (0.05453) (0.05633)

Firm FE YES NO YES NO
Disease FE YES NO YES NO
Firm-Disease FE NO YES NO YES
N of Firms 3,787 3,768 3,651 3,632
N of Observations 4,493,871 4,483,884 1,432,671 1,432,671

Note: *, *# *¥** denote significance at 5%, 1% and 0.1% level respectively. Observations at the firm-gene-disease level represent
all the potential GWAS opportunities considered by a firm. Std. err. clustered two-ways at the firm level. Sum of USPTO patent
applications: sum of USPTO patent applications filed in a given year that target a specific gene-disease combination. Has Gene
Knowledge (0/1): 0/1 = 1 if the firm has at least one publication about the specific gene before the GWAS associated it with a
disease. Columns 1 and 2 include only GWAS associations that fail subsequent replications, while columns 3 and 4 include only
GWAS associations that are later replicated.
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Table E.14: The results for false positives of Appendix Table E.13 are robust to alternative definitions
of the risk set of GWAS evaluated by a given firm

Dependent Variable: USPTO patent applications
Share of patent portfolio: >0.005 >0.01 >0.02 >0.05 >0.1

Has Gene Knowledge (0/1)  -0.1155%%% -0.1082%** -0.0895%% -0.1080%** -0.1712%%*
0.01642)  (0.01722)  (0.02690)  (0.02089)  (0.01818)

Firm-Disease FE YES YES YES YES YES
N of firms 3765 3752 3666 2784 1562
N of obs 3,546,300 2,618,859 1,515,477 534,200 202,376

Note: *, ** *** denote significance at 5%, 1% and 0.1% level respectively. Observations at the firm-gene-disease level. Std. err. clustered
two-ways at the disease and gene level. Each column is estimated from a separate regression using a progressively more stringent risk set
of GWAS evaluated, defined as those involving diseases constituting a certain share of a firm’s patent portfolio. The sample is restricted to
false-positive GWAS. USPTO patent applications: count of USPTO patent applications filed in a given year that target a specific gene-disease
combination. Has Gene Knowledge (0/1): 0/1 = 1 if the firm has at least one publication about the specific gene before the GWAS associated
it with a disease.

Table E.15: The results for true positives of Appendix Table E.13 are robust to alternative definitions
of the risk set of GWAS evaluated by a given firm

Dependent Variable: USPTO patent applications
Share of patent portfolio: >(.005 >0.01 >0.02 >0.05 >0.1

Has Gene Knowledge (0/1) 0.2708***  (0.3336*** (0.4992%**  (.7730%* 0.7808
(0.06344)  (0.06788) (0.11716) (0.28434) (0.44003)

Firm-Disease FE YES YES YES YES YES
N of firms 3,629 3,601 3,487 2,485 1,291
N of obs 1,159,770 867,620 514,864 192,353 75,732

Note: *, ** *** denote significance at 5%, 1% and 0.1% level respectively. Observations at the firm-gene-disease level. Std. err. clustered
two-ways at the disease and gene level. Each column is estimated from a separate regression using a progressively more stringent risk set
of GWAS evaluated, defined as those involving diseases constituting a certain share of a firm’s patent portfolio. The sample is restricted to
true positive GWAS. USPTO patent applications: count of USPTO patent applications filed in a given year that target a specific gene-disease
combination. Has Gene Knowledge (0/1): 0/1 = 1 if the firm has at least one publication about the specific gene before the GWAS associated
it with a disease.
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Table E.16: Descriptive evidence that firms delaying investments in a GWAS finding are less likely to
choose false positives, but also less likely to obtain highly cited patents or drugs

Cit-weighted

Dependent Variable False positive patents Drugs (total) Drugs (weighted)
Years Waited 20.0248%5 1781255 -0.0001 -0.0005*
to First Patent

(0.0028) (0.1510) (0.0003) (0.0002)
Firm FE YES YES YES YES
Disease FE YES YES YES YES
N of firms 225 225 225 225
N of obs 30615 30615 30615 30615
Mean of Dep Var: 0.5310 34.861 0.0081 0.0047

Note: *, ***¥** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease association level. Std.
err. clustered two-ways at the disease and gene level. Years Waited to First Patent: count of years between the GWAS publication and
the firm first patent application targeting the gene-disease pair. False positive: 0/1=1 if the gene-disease association is not subsequently
replicated. Cit-weighted patent: count of USPTO patent applications filed in a given year that target a specific gene-disease combination,
weighted by the number of patent citations received up to seven years after patent publication. Drugs (total): number of molecules
on a gene-disease combination entering the discovery stage. Drugs (weighted): number of molecules on a gene-disease combination
entering the discovery stage weighted by their scientific novelty (i.e., by the number of times that the same mechanism of action has
been used before, following Dranove et al. 2022).
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