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ABSTRACT

Organizational experience is often scarce, making the ability to enrich it through
generalization a central feature of learning. However, the consequences of learning
in this way remain poorly understood. How does generalization shape the balance
between omission and commission errors, and which organizations rely on it more?
We develop a computational model that shows how generalization makes learning
more efficient by spreading feedback across related alternatives, but this efficiency
comes at the cost of increased omission errors. The model further predicts that the
optimal degree of generalization depends on the nature of the firm’s prior experience.
We test these predictions using data on clinical trial failures. Consistent with the
model, pharmaceutical firms reduce investment in biologically related drug targets,
with the most significant declines occurring for proximate high-merit targets. The
effects are larger for firms with more limited or concentrated experience, suggesting
that generalization is an imperfect yet useful substitute for direct knowledge. These
findings highlight both the promise and the pitfalls of generalization in settings where
experience is limited.
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1. INTRODUCTION

Learning from experience has long been recognized as foundational to organizational intelligence
and strategic decision making (March and Olsen, 1975; Levitt and March, 1988; March, 1999;
Argote, 2012). In classic conceptualizations of learning, an action is taken, feedback is received,
and behavior is revised accordingly (Thorndike, 1913; March and Olsen, 1975; Sutton and Barto,
1998). However, an often-overlooked challenge inherent in learning from experience is that his-
tory “offers only meager samples of experience” (March et al., 1991: 1).

One setting where this scarcity of experience is evident is technological innovation. Consider,
for instance, pharmaceutical drug development. In deciding which protein to pursue as a drug
target, firms must navigate a vast biological search space with more than 19,000 proteins and
millions of possible protein-disease combinations (Buniello et al., 2025; Tranchero, 2024). In
addition to the sheer size of the search space, clinical trials are expensive — with median costs
estimated at $8.6 million for Phase II and $21.4 million for Phase III trials (Martin et al., 2017)
— and typically extend over several years. Strict regulatory oversight and ethical concerns about
patient safety further constrain the experiments that organizations can run. As a result, pharma-
ceutical firms cannot rely solely on direct experience to guide their search. The scale of the op-
portunity space, combined with high costs, long feedback cycles, and safety concerns, severely
limits the accumulation of experiential knowledge. Yet despite these challenges, firms do, in fact,
learn, adapt, make informed decisions, and identify novel opportunities.

In reconciling this puzzle, an emerging body of work highlights generalization, defined as the
ability to learn from “prior experience that is distinct from, but related to, one’s current circum-
stance” (Choi and Levinthal, 2023: 1073). In this line of work, organizations take actions, receive
feedback, and update their beliefs not only about the focal alternative but also about other options
perceived as being related. Generalization thus allows organizations to infer the likely outcomes
of untested options by transferring experience across related contexts. In pharmaceutical innova-
tion, for example, a clinical trial on a given drug target may yield information about biologically
related targets, even without direct experimentation. More broadly, this capacity to extend in-
sights beyond narrowly accumulated experience is central to organizational learning — shaping

not only drug discovery but many domains of research and development (R&D) where experi-



mentation is costly, slow, and limited.

Despite growing theoretical interest in generalization, several important questions remain. Ex-
isting treatments are largely conceptual, leaving unanswered whether and how organizations ac-
tually generalize their experience. Moreover, while generalization is often viewed as a way to
compensate for limited direct experience, its consequences for search behavior are unclear. In
particular, it is not yet well understood how generalization affects the likelihood of organizations
committing errors of omission (overlooking promising options) and commission (pursuing poor
ones). On the one hand, if related actions tend to produce similar outcomes, then generalizing
feedback across alternatives may help organizations infer the merit of untested options and search
more efficiently. On the other hand, learning processes often display various forms of myopia
(Levitt and March, 1988; Levinthal and March, 1993). By extrapolating experience across alter-
natives, these biases may become especially pernicious, leading organizations to reject promising
alternatives simply because they resemble past failures or to pursue poor alternatives because they
resemble past successes.

These conflicting effects suggest a fundamental bias—variance tradeoff: generalization can re-
duce variance in the organization’s beliefs by aggregating experience across related alternatives,
but it may also introduce bias by propagating false positives and false negatives. This tension
raises the broader question of which organizations rely more on generalization, and why. One
potential explanation lies in the structure of organizations’ prior experience (Eggers, 2012a). A
richer and more varied experience base may allow organizations to more effectively generalize,
improving their ability to extend lessons to novel alternatives (Gavetti et al., 2005; Miller and Lin,
2015). Yet abundant direct experience also reduces the need to infer from related options, making
generalization less attractive if it risks introducing systematic biases. By contrast, organizations
with narrower or more limited experience may depend more heavily on generalization, underscor-
ing its role as a useful but imperfect substitute for direct knowledge.

Addressing these questions is essential for understanding how organizations navigate complex
search spaces when direct experience is scarce. To explore these dynamics, we develop a compu-
tational model of organizational learning. In the model, organizations decide whether to accept or
reject an alternative given limited direct experience, learn as a function of observed performance

outcomes, and navigate tradeoffs between pursuing promising alternatives and avoiding costly



mistakes. We then systematically vary the nature of organizations’ prior experience bases and the
extent to which they generalize their experience across alternatives. This allows us to derive pre-
cise, testable predictions regarding the impact of generalizing experience on search. The model
predicts that organizations that generalize will display “spatial spillovers” in learning: after a fail-
ure, they become less likely to accept not only the focal alternative but also nearby ones, with the
effect weakening as the distance from the focal alternative increases. The model further predicts
stronger spillovers for alternatives that are latently high performing than for those that are latently
low performing, implying that generalizing negative feedback reduces commission errors while
increasing omission errors. Finally, the model shows that organizations with less experience or
more concentrated experience bases benefit more from generalization than those with higher lev-
els of experience or more diffuse experience.

We then test the predictions of the model. Empirically studying how organizations learn from
failure is difficult because, in many settings, it is challenging to observe credible shocks to organi-
zational beliefs. Firms experiment selectively, outcomes are noisy, and feedback is often incom-
plete or ambiguous, making it hard to connect decisions to subsequent adjustments. Pharmaceu-
tical R&D offers a rare exception (Kang, 2025). Clinical trials are large, expensive, and tightly
regulated, which ensures that failures are credibly reported and widely disseminated through plat-
forms such as the National Institutes of Health’s ClinicalTrials.gov website. Because the search
for effective drug targets spans millions of possible protein—disease combinations, each trial pro-
vides potential signals not only about the focal project but also about related opportunities. Fail-
ures, in particular, are salient and unanticipated events that confront firms with clear negative
evidence, which is typically recognized by both the sponsoring firm and rivals (Krieger, 2021).
Furthermore, we can leverage novel, granular measures of genetic distance between drug targets
(Szklarczyk et al., 2025). These features make drug development an unusually clean setting for
testing how organizations generalize experiential feedback.

The evidence closely mirrors the predictions of the model. Firms learn from negative feed-
back and sharply reduce investment in a protein—disease pair after a failed trial on that pair. These
effects extend beyond the focal target: firms also scale back their innovation efforts in function-
ally proximate alternatives, with the magnitude of the response declining smoothly with dis-

tance in biological space. Strikingly, this spillover is strongest for neighboring high-merit tar-



gets, which firms are disproportionately likely to abandon after a related failure. This pattern
reflects what Harrison and March (1984) describe as post-decision surprise: because firms typ-
ically attach higher priors to promising targets, a failure involving a related alternative generates
a larger downward revision for high-merit projects than for weaker ones. The result is a system-
atic asymmetry in which generalization reduces commission errors by discouraging investment
in low-potential drug targets, but increases omission errors by leading firms to overlook valuable
opportunities. Finally, we confirm that the extent of generalization depends on firms’ prior expe-
rience. Organizations with more concentrated knowledge generalize more, while those with more
experience generalize less, underscoring generalization’s role as a useful but imperfect substitute
for direct knowledge.

Taken together, this paper makes several contributions to the literature on organizational learn-
ing and adaptation. First, it foregrounds the challenge of learning under conditions of limited
experience (March et al., 1991) — a defining yet often overlooked feature of many real-world
innovation environments — and shows how generalization fundamentally shapes the dynamics
of organizational search. Second, it develops a computational model that formalizes generaliza-
tion as a mechanism for transferring feedback across related alternatives. The model reveals a
key bias—variance tradeoff. The result of this is that while generalization reduces commission
errors by discouraging investment in low-quality options, it also increases omission errors by
prematurely discarding high-quality ones. Importantly, this tradeoff is contingent, shifting sys-
tematically with the structure of the organization’s prior experience base. These dynamics offer
novel theoretical insight into when generalization is most effective and which organizations are
most likely to rely on it. Third, we provide the first large-sample empirical evidence of general-
ization in organizational learning. Using data from pharmaceutical clinical trials coupled with
novel fine-grained biological measures, we show that firms withdraw from both failed targets and
related ones. Finally, by combining a computational model with this large-scale empirical anal-
ysis, we demonstrate how various conceptual and cognitive mechanisms can be measured and

tested, opening the door to a more precise understanding of how organizations learn and adapt.



2. LITERATURE REVIEW

Learning can be either online, through direct experience, or offline, using existing knowledge to
foresee the outcomes of untested actions (Gavetti and Levinthal, 2000). However, the literature
on organizational learning is curiously asymmetric in having primarily focused on the former.
For example, prior research has highlighted the phenomenon of organizational learning curves
in manufacturing and other routinized tasks (Argote and Epple, 1990; Darr et al., 1995). While
the contexts employed in these and other studies have varied widely, core to each of them is that
learning is a function of direct experience (also known as “experiential learning” or “learning by
doing”), and occurs over tasks in which the organization accumulates extensive expertise. Simi-
larly, research grounded in the multi-armed bandit framework, a canonical representation of the
exploration—exploitation tradeoff (March, 2003; Posen and Levinthal, 2012), typically assumes
that learning unfolds exclusively online and over many periods (often more than 1,000) relative to
a small set of alternatives (generally 2 to 10 options).

Less well understood, however, is how organizations learn when abundant direct feedback is
unavailable. This kind of offline learning is particularly vital in vast and uncertain search land-
scapes with irreversibility in investment decisions (Adner and Levinthal, 2024). Prior work has
highlighted the central role of organizations’ mental models or representations (Csaszar and Levinthal,
2016; Kang, 2025) and theories (Felin and Zenger, 2009, 2017) in informing their decision-making
and where they ultimately choose to direct their search and innovation efforts. However, this line
of work has largely been silent on the initial development and refinement of these mental models,
instead assuming them to be fixed ex ante (c.f. Gavetti and Levinthal 2000) or that organizations
concurrently search through a set of multiple, pre-existing mental models to find a representation
that effectively approximates reality (Csaszar and Levinthal, 2016).

Generalization from experience offers a potential explanation for how organizations develop
and refine their mental models. However, this learning mechanism and its implications for orga-
nizations remain insufficiently understood. Much of the existing work is conceptual and varies
widely in how generalization is operationalized, with many formulations being difficult to test
empirically at scale. Prior studies have often framed generalization as a form of analogical rea-

soning, where learning occurs through one-to-one matches between a novel experience and some



previous domain with which the organization is familiar (Gavetti et al., 2005; Miller and Lin,
2015; Carroll and Sgrensen, 2024). This process is typically one-directional: the prior experi-
ence informs the new situation, but subsequent experience with the new alternative rarely leads
to a revision of the original belief. To address this limitation, later research has allowed for one-
to-many, category-based learning (Martignoni et al., 2016; Choi and Levinthal, 2023), whereby
alternatives are grouped into categories as a function of their perceived relatedness. In this view,
organizations learn not about isolated options but about the quality of the category. Broader cat-
egories enable more extensive generalization but at the cost of reduced precision within the cate-
gory (Choi and Levinthal, 2023).

Both analogical and categorical approaches, however, rely on sharp decision boundaries that
treat generalization as binary. Building on more recent work, we relax this assumption and model
generalization as a continuous, distance-dependent process in which its strength decays smoothly
with the distance between alternatives (Schliesmann, 2025). This formulation captures a more re-
alistic feature of organizational learning: feedback from one experience rarely transfers perfectly
or not at all, but rather influences beliefs about related options in proportion to their similarity.
Representing generalization in this way allows us to model how organizations generalize feed-
back through complex search spaces. This formulation also makes the mechanism empirically
tractable, since it requires only observed performance outcomes and a measurable distance met-
ric rather than an in-depth reconstruction of underlying matching or categorization processes. In
the following section, we introduce a computational model of organizational learning to derive
testable hypotheses about the nature of generalization, its implications as an adaptive mechanism,

and the factors that influence how extensively organizations generalize.

3. COMPUTATIONAL MODEL

We develop a computational model to examine how organizations learn and adapt in uncertain
environments. The model is designed to capture core features of adaptive decision-making, where
organizations must act given limited experience, learn from performance feedback, and navigate
tradeoffs between pursuing promising opportunities and avoiding costly mistakes. By varying the

extent to which organizations generalize their experience across related alternatives, the model



allows us to derive precise, testable hypotheses about generalization as an adaptive mechanism in
search. In particular, the model predicts its effects on organizational behavior and the conditions

under which organizations are more or less likely to generalize.

3.1. MODEL STRUCTURE

We consider a model structure in which an organization responds to a stream of heterogeneous
alternatives over time (Csaszar, 2013; Csaszar and Eggers, 2013; Choi and Levinthal, 2023). In
each period, the organization faces a random alternative, sampled from the opportunity structure,
and must decide whether to accept it and receive a stochastic payoff or reject it and receive a de-
fault payoff. Over time, the organization revises its probability of accepting different alternatives
as a function of its choices and observed payoffs. To maximize performance, the organization
must learn to correctly accept promising alternatives (those that generate payoffs in excess of the
default reward) and reject unpromising ones (those that generate payoffs below the default re-

ward).

3.1.1. Task Environment

The task environment consists of a set of latent alternatives, each characterized by its location in
a one-dimensional trait space and by its expected performance or merit. Formally, in each period
t, one alternative i € {1,..., N} is selected at random." If the organization decides to accept
the alternative, the realized reward for alternative 7 is drawn from a Bernoulli distribution where
the outcome is either a “success”, generating a payoff equal to 1, or a “failure”, a payoft equal

to 0. Success and failure occur with respective probabilities p; and 1 — p;. The underlying state
of the environment is defined as a set of probabilities, {pi, ..., pn}. If the organization decides
not to accept an alternative, it receives a fixed reward equal to 0.5, the mean of the underlying
probability distribution.

The opportunity structure is generated by sampling values from a Gaussian Process prior

'In this respect, the project screening model developed here differs from an n-armed bandit model, where the
organization is free to choose any alternative in each period. This choice was made to more closely map the model to
the empirics, where organizations learn from both their actions and the actions of others (an exogenous choice rela-
tive to the perspective of the focal firm). While, for simplicity, we do not model multiple organizations, the results of
the model can be interpreted as a representative firm in the industry responding to observed outcomes.



where each alternative occupies a discrete position in trait space i € {1,..., N}. Correlations
across alternatives are governed by a radial basis function (Kgrpr) (Wu et al., 2018; Schliesmann,
2025). Formally, the radial basis function is defined as:
2

Krgp(i, ) = exp (—%) (1)
where the lengthscale parameter () tunes the level of autocorrelation between alternatives ¢ and
J and, by extension, the level of ruggedness in the opportunity space. For example, when A — 0
the opportunity space becomes increasingly uncorrelated such that each alternative is an indepen-
dent and identically distributed draw from a standard normal distribution. Conversely, as A — oo,
the opportunity structure becomes increasingly correlated such that the autocorrelation between
adjacent alternatives approaches 1, and all alternatives have the same expected performance.
Once a full set of values is generated, they are then transformed into probabilities via min-max

normalization over the range [0, 1].2

3.1.2.  Learning and Choice

Whether the organization accepts an alternative is informed by a process of reinforcement learn-
ing, where the probability of accepting an alternative increases following positive performance
feedback and decreases following negative feedback (Thorndike, 1913; Bush and Mosteller, 1955;
Lave and March, 1975; Sutton and Barto, 1998). We extend this property of learning processes

to incorporate a consideration of generalization. In our formulation, organizations not only up-
date their probability of accepting the focal alternative but also revise their likelihood of accept-
ing neighboring ones, with the strength of this updating declining with distance in the trait space
(Shepard, 1987; Wu et al., 2018, 2024; Schliesmann, 2025). The full model of probability adjust-

ment is given by:

Piiy1=Pi;+¢- a’ - (Rit — Pjy) 2)

2We have also assessed the robustness of the main results absent normalization. In this setting, an outcome is
considered a success if its realized performance — defined as the alternative’s underlying merit plus a normally
distributed error term — exceeds the mean of the underlying distribution (i.e., the default payoff). Otherwise, it is
considered a failure. Qualitative results are robust to this change in specification.



where P;; is alternative j’s acceptance probability in the current period, R; ; is the reward from
accepting the focal alternative 7 in the current period, ¢ € |0, 1] is the learning rate, a € [0, 1]

is the degree of generalization, and d is the distance between alternatives 7 and j. The parame-
ter o governs how extensively the organization generalizes feedback across alternatives: when

a = 0, the organization does not engage in generalization, and the learning process collapses

to the standard Bush—Mosteller fractional adjustment methodology (Bush and Mosteller, 1955;
Denrell and March, 2001; Levinthal and Schliesmann, 2025); as « increases, the organization up-
dates its acceptance probability about not only the chosen alternative but also about increasingly
distant alternatives; and in the limit, when o = 1, the organization treats all alternatives as fully
interchangeable. In the main analysis, we vary the degree of generalization « to assess the impli-
cations of this mechanism on organizational adaptation. We set the baseline learning rate ¢ = 0.5
and initialize acceptance probabilities at Py = 0.5.3 If the organization rejects the focal alterna-

tive, no updating occurs since it receives the default payoff.

3.2. ANALYSIS

The analysis of the computational model is divided into three sections. In the first, we investi-
gate the general behavioral patterns of organizations that generalize their experience across al-
ternatives. Next, we investigate the implications of generalizing performance feedback across
alternatives as a function of their underlying merit. In doing so, we derive several implications of
generalization on the propensity of organizations to commit errors of omission and commission.
Finally, we extend the model to investigate how the level and concentration of an organization’s

prior experience influence the extent to which it should engage in generalization.

3.2.1. Baseline Results

We first study the patterns of organizational behavior generated by the model described in Section
2.1. Thus, a set of NV alternatives is sampled from a Gaussian Process with a radial basis function

kernel, and a population of organizations is analyzed as responding to this environment. Follow-

3In addition, we have run robustness analysis across a range of ¢ values. Crucially, ¢ functions as a scaling pa-
rameter because the realized learning rate for an alternative, at a given distance, is a function of ¢ and «. The results
of this analysis are reported in technical appendix A.



ing the completion of this run, a new set of /V alternatives is then sampled according to the same
process, and a new set of organizations is examined. This process is then repeated for 100,000
unique environments. The model is run for 100 periods and for N = 50 alternatives. This set-
ting was chosen to highlight a task environment where organizations face a meaningful evaluation
challenge as they are unlikely to accumulate multiple instances of direct experience with each
alternative (March et al., 1991; Choi and Levinthal, 2023; Levinthal and Schliesmann, 2025).
Further, the lengthscale parameter () is set to an intermediate value of 1 such that the lag(1) au-
tocorrelation across alternatives is approximately equal to 0.6.*

For analytical clarity, we report results following negative feedback. The mechanisms we
highlight in the model operate symmetrically but not with equal magnitude: a success gener-
ates positive spillovers to related alternatives just as a failure produces negative ones; however,
the effects are stronger following failure than success. The results following positive feedback are
reported in Appendix A. Emphasizing failures serves to streamline exposition and highlight the
learning dynamics that follow unexpected negative feedback. This choice also aligns the model
with the empirical setting, where failures are typically less anticipated by firms and therefore pro-
vide cleaner identification (see discussion in subsection 5.1).

The main results are reported in Figure 1, which plots the distribution of changes in the prob-
ability of accepting an alternative in the subsequent period following a failure, as a function of
its distance from the chosen alternative for a fixed level of the generalization parameter (o). In
other words, the figure illustrates how the degree of generalization influences the likelihood that
an organization will accept an alternative at distance x after a failure. For visual clarity, we set
the o value equal to 0.8 and we present the results for various distance bins. Specifically, we plot
the direct effect (distance 0), along with alternatives at distances 1-5, 6-10, 11-20, and 21-50.
Turning first to the direct effect, we find, consistent with prior work on learning processes (e.g.,
Thorndike, 1913), that the probability of accepting an alternative declines following negative per-

formance feedback.
[INSERT FIGURE 1 ABOUT HERE]

Turning next to the effect of negative performance feedback on unsampled alternatives (a dis-

“In technical appendix A, we assess the robustness of our main results to changes in the specification of each
parameter.
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tance greater than 0), we observe that organizations that generalize their experience display a
“spillover effect” whereby the probability of subsequently accepting related alternatives declines
following a failure with the sampled alternative. For example, for alternatives with absolute dis-
tances from 1 to 5, the mean reduction in the acceptance probability is approximately equal to
0.143 when o = 0.8. In contrast, the mean reduction for organizations not engaging in generaliza-
tion would be equal to 0.° Finally, the magnitude of the spillover effect is attenuated by distance,
such that the effect of failure on the change in acceptance probability is greatest for the closest

alternatives. Taken together, Figure 1 suggests the following baseline hypothesis:

Hypothesis 1: Organizations are less likely to pursue related alternatives following negative per-
formance feedback. This generalization effect is attenuated as the distance from the focal alterna-

tive increases.

3.2.2.  Generalization and Errors of Omission and Commission

We now examine how generalization affects the likelihood of organizations’ accepting alterna-
tives that differ in their underlying merit, and in turn how it shapes the likelihood of omission and
commission errors. This analysis is presented in Figure 2, which plots, as a function of the dis-
tance from the focal alternative, the change in the probability of accepting an alternative that is
either latently promising or unpromising. For visual clarity, we again fix @« = 0.8 and classify
alternatives as high or low merit relative to the default payoff from rejecting an alternative (0.5).
Alternatives with an expected payoff greater than or equal to 0.5 are high merit and should, in
principle, always be accepted, while those below 0.5 are low merit and should be rejected. Effec-
tive learning improves performance by increasing the probability of accepting high-merit options

and deterring the pursuit of low-merit ones.
[INSERT FIGURE 2 ABOUT HERE]

We find that generalizing negative performance feedback has a complex effect on omission

and commission errors. On the one hand, it reduces the probability that organizations accept low-

Varying the degree of generalization () has little effect on the mean change in the likelihood of accepting the
focal alternative in the subsequent period. Its influence is instead evident in the magnitude of spillovers: higher val-
ues of o amplify the effect of negative feedback on related alternatives. Appendix Figure A.3 reports these results in
detail.

11



merit alternatives, with the size of this reduction declining with increased distance from the focal
option. This occurs because alternatives that are close in the search space are often correlated in
quality, so negative feedback on one option provides informative signals about the likely weak-
ness of its neighbors. By spreading feedback across related choices, generalization thus helps
organizations avoid repeating mistakes on similarly poor options. On the other hand, this im-
provement comes at a cost: the same mechanism increases the likelihood of omission errors, as
promising alternatives that resemble failed ones are also discarded, leading to a systematic ne-
glect of high-merit opportunities relative to learning without generalization.

Additionally, it is important to note the relative magnitude of the spillover effects for low- and
high-merit alternatives. We find that the spillover effect is greater for high-merit alternatives than
for low-merit alternatives. For example, for alternatives with a distance between 1 and 5 from the
focal alternative, the reduction in acceptance probability is approximately 0.136 for low-merit al-
ternatives and 0.15 for high-merit alternatives. This result is consistent across all distance bins
and reflects the role of post-decision surprise (Harrison and March, 1984), defined as the degree
to which outcomes deviate from prior expectations. As organizations gain experience, their ac-
ceptance probabilities become positively correlated with the true underlying merit, making them
more inclined to pursue promising alternatives. Consequently, when negative feedback is gener-
alized, the downward revision is larger for high-merit options, which firms had stronger priors to
accept, than for low-merit ones, which were already less likely to be pursued. Taken together, this

mechanism yields the following prediction:

Hypothesis 2: Following negative performance feedback, organizations show a stronger gen-
eralization effect for high-merit alternatives than for low-merit ones, resulting in an increase in

omission errors that is proportionally larger than the decrease in commission errors.

3.2.3. Heterogeneity Analysis

We now investigate how organizations differ in their reliance on generalization. Specifically, we
consider the optimal degree of generalization as a function of the level and concentration of an
organization’s prior experience base. As such, we extend the model structure developed in Sec-

tion 3.1 to incorporate a consideration of organizations’ prior experience by implementing an m
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period pre-entry learning phase (Chen et al., 2018, 2024; Piezunka et al., 2022). Each organiza-
tion starts the pre-entry learning phase with homogeneous initial acceptance probabilities equal
to 0.5. In each pre-entry period, an alternative is selected at random and accepted by the orga-
nization with certainty. The alternative provides noisy feedback, which the organization uses to
update its acceptance probability for that alternative. If the organization has a positive « value, it
also generalizes this experience to neighboring alternatives. Following the completion of the m
pre-entry periods, organizations will have non-homogeneous and partially informed acceptance
probabilities. The simulation then commences as described in the model section.

We focus on two key parameters that characterize this pre-entry learning period, its length (m)
and the concentration of experience (w). Turning first to m, if the pre-entry learning period is
0, the model collapses into the structure employed above, where organizations start with homo-
geneous initial acceptance probabilities. As m increases, however, the organization has a richer
experience base to inform its decisions. Turning next to w, this parameter informs the probability
of any given alternative being sampled in the pre-entry learning phase. Specifically, alternatives
are sampled in the pre-entry period based on their distance from the previously selected alterna-
tive such that the probability of selecting alternative j given previous choice ¢ is proportional to

(1 — w)? normalized by the sum of all weights:

(1 —w)

> (1L —w)

Jj=1

PG li) = 3)

where d is the distance between the previously sampled alternative ¢ and candidate alternative
j,and w 1is a constant bounded between [0, 1). As w—1, experience becomes increasingly con-
centrated such that the organization will almost exclusively sample the first alternative it selects.
Conversely, as w—0, pre-entry experience becomes increasingly diffuse and, in the limit, is an
unbiased random sample of alternatives, irrespective of their distance from the previously sam-
pled alternative.

The results of this analysis on the optimal level of generalization (a*) are reported in Figure 3,
with Panel A highlighting the effect of increasing the length of the pre-entry learning period (1m)

and Panel B highlighting the effect of increasing the level of concentration in experience (w).
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We operationalize performance as the organization’s final period screening accuracy (Choi and
Levinthal, 2023) and consider generalization («) values between [0,1] with step sizes of 0.05. For
simplicity, we hold w constant and equal to O in Panel A and n constant and equal to 50 in Panel
B; however, results are robust to changes in these values.® Turning first to the effect of pre-entry
learning length (m), we find that increased experience reduces the optimal level of generalization
(a*), which declines from 0.35 when m = 0 to 0.05 when m = 100. In contrast, an increased
concentration of experience (Panel B) has the opposite effect: the optimal level of generalization
(o) increases with greater concentration, shifting from 0.2 when w = 0 to 0.35 when w = 0.99.
Taken together, generalization can be viewed as a partial substitute for both additional experi-
ence and diverse experience. Organizations with rich and varied histories can often rely directly
on accumulated evidence to guide their choices, making them less dependent on inference across
alternatives. By contrast, firms with narrower or more limited experience bases lack the breadth
of expertise needed to evaluate new opportunities. For them, generalization becomes more cen-
tral, providing a way to extrapolate from what little they know to areas they have not yet tested. In
this sense, generalization enriches what would otherwise be a sparse learning environment, func-
tioning as a compensatory mechanism that helps organizations navigate vast and uncertain search

spaces when direct experience is scarce (March et al., 1991). As such, the model predicts that:

Hypothesis 3A: Following negative performance feedback, organizations with more experience

will display less pronounced generalization.

Hypothesis 3B: Following negative performance feedback, organizations with more concentrated

experience will display more pronounced generalization.

[INSERT FIGURE 3 ABOUT HERE]

4. EMPIRICAL SETTING

We test the model’s predictions with an empirical study of how pharmaceutical firms learn from

clinical trial failures. This setting allows us to observe how organizations update their R&D choices

®In this regard, it is worth noting that the effect of experience concentration is attenuated as the length of the
pre-entry learning period (m) decreases.
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in the face of negative feedback. We examine whether firms scale back their innovation efforts for
drug targets that are biologically related to the failed ones, and analyze how the extent of general-

ization varies with the structure of their prior experience.

4.1. LEARNING FROM FAILURES IN CLINICAL DEVELOPMENT

Bringing a new drug to market is a challenging endeavor. One of the earliest and most critical de-
cisions is selecting a drug target — usually a protein that, when modulated by a drug, can achieve
a therapeutic effect (Nelson et al., 2015; Razuvayevskaya et al., 2024). With over 19,000 protein-
coding genes and millions of possible protein-disease combinations, firms face a vast search
space in which most candidates offer little therapeutic value (Tranchero, 2024). After a target is
chosen, compounds undergo preclinical testing in animal models, followed by human clinical tri-
als in three sequential phases of increasing cost, scale, and regulatory scrutiny. Phase I assesses
safety in a small group, phase II tests efficacy in a larger sample, and phase III confirms both in

a broader population over time. Despite this structured pipeline, attrition remains high: only one
in ten drugs starting clinical trials ultimately receives approval from the U.S. Food and Drug Ad-
ministration (Hay et al., 2014). This is because, despite extensive scientific research and testing,
the actual therapeutic potential of a drug target becomes clear only when tested in large samples
of human subjects.

The transparency and regulatory structure of clinical trials create a rich setting for studying
organizational learning. Past empirical work on this industry shows that firms do not learn solely
from their own efforts (Khanna et al., 2016; Maslach, 2016), but also observe and respond to the
actions of others (Baum and Dahlin, 2007). Disclosure requirements, such as the need to register
trials on the ClinicalTrials.gov platform, ensure that firms remain aware of the progress of com-
petitors (Kao, 2025). For example, in the pursuit of treatments for Alzheimer’s disease, multiple
firms invested in drugs targeting the [3-secretase 1 (BACE1) protein. In 2016, Eli Lilly reported
the early termination of a highly anticipated phase III clinical trial targeting BACE1 due to lack-
luster results.” This failure undermined confidence in BACE1 as a drug target, prompting other

firms that were pursuing it to re-evaluate their clinical investments (Krieger, 2021).

"The details of Eli Lilly’s EXPEDITION 3 clinical trial are available online on ClinicalTrials.gov: https:
//clinicaltrials.gov/study/NCT01900665
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While firms often respond to failed actions, a less-explored question is what they can learn
about actions not taken. In the case of Eli Lilly’s failed BACEI trial, industry observers noted
that the outcome could have implications beyond the specific compound tested (Begley, 2018).
Rather than being viewed as an isolated setback, the trial was interpreted by some as a broader
negative signal for functionally similar but untested targets (Garde, 2016). For example, as the
name suggests, BACE2 is a close homolog of BACEI and participates in the same biological pro-
cesses (Yeap et al., 2023). From a scientific standpoint, it is reasonable to infer that the limita-
tions evident for BACE1 might extend to BACE?2 and other similarly proximate targets.

At first glance, such generalization appears sensible: failures on one alternative provide in-
formation about others that share functional similarities. Yet the organizational reality is more
complicated. A long tradition of research suggests that firms often struggle to extract accurate
lessons even from direct failure (Eggers, 2012a). Cognitive biases, organizational inertia, and
sunk costs frequently inhibit adaptation (Ross and Staw, 1993; Tripsas and Gavetti, 2000). These
challenges are possibly magnified when extrapolating to untested opportunities, where the signal
is noisier and the inference less certain. Whether and how firms generalize from failure to related

alternatives remains an open empirical question.

4.2. DATA AND MEASUREMENT

Human proteins constitute possible drug targets for disease treatment. We model protein—disease
pairs as the set of alternatives available to firms, which together constitute the search landscape
in which organizations learn from clinical trials and allocate their R&D investments. Genetic
distance, measured through protein—protein interactions, captures how closely related two targets
are and allows us to assess whether firms generalize feedback to nearby alternatives. To evaluate
whether an organization invests in the most promising targets, we use Open Targets scores, which

provide an evidence-based measure of the therapeutic potential of each protein—disease pair.

4.2.1. Clinical Trials

We use data from ClinicalTrials.gov, an online registry maintained by the National Institutes of

Health (NIH) that documents ongoing and completed clinical trials. Following prior work, we fo-
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cus on phase II and phase III trials, which represent significant investments in drug development
(Krieger, 2021; Martin et al., 2017). In contrast, phase I trials are less consistently reported and
often lack complete metadata (Kang, 2025; Kao, 2025), making them less suitable for systematic
analysis. They are also less informative from a learning perspective, as early-stage failures tend to
provide weaker and more ambiguous signals (Eggers, 2012b; Khanna et al., 2016). Accordingly,
we construct a dataset of all phase I and III trials completed between 2001 and 2019, includ-

ing information on the drug target and disease studied in each case. We stop at 2019 to avoid the
confounding effects of the COVID-19 pandemic and truncation from reporting delays. Proteins
are mapped to unique Gene IDs provided by the National Center for Biotechnology Information
(NCBI) and diseases to Medical Subject Headings (MeSH) terms, allowing us to trace trial out-
comes at the level of specific protein-disease combinations (see Appendix B for additional details
on these data). To identify failures, we rely on the reported trial status and define a trial as failed
if it was terminated or withdrawn prior to completion. While terminations can occur for multi-
ple reasons, a lack of therapeutic efficacy and the emergence of side effects of the drug target are
strong predictors (Razuvayevskaya et al., 2024). These early discontinuations, like the case of Eli
Lilly’s BACEI trial, offer a clear setting to examine how firms respond to highly salient negative

feedback.

4.2.2.  Firm Patent Applications and Publications

We use data on patent applications to study how firms adapt their innovation efforts across po-
tential targets in response to failure. Pharmaceutical firms have a well-documented tendency to
patent early and frequently in the R&D process (Cohen et al., 2000), making patent applications
a good real-time indicator of where they are directing their investments. Through a partnership
with the European Bioinformatics Institute, we use proprietary data compiled by SciBite’s TER-
Mite software, which extracts biological entities from full USPTO patent texts between 2001 and
2019 (Tranchero, 2024). The algorithm reliably distinguishes true biological entities from casual
mentions, mapping proteins and diseases to the same unique identifiers used to classify clinical
trials.

To test Hypotheses 3A and 3B, we divide firms based on two dimensions of their research

expertise. First, we identify higher levels of experience with a given genetic target using firms’
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publication records. We draw on data from PubTator Central (Wei et al., 2024), which provides
computer-annotated protein mentions for all publications indexed in PubMed. These data are
matched to firms in our sample using author affiliation information, allowing us to construct a
protein-level measure of expertise for each firm. A firm is classified as having higher experience
if it has previously published at least once on the drug target featured in its patent application
(Tranchero, 2024). Second, we measure the concentration of a firm’s expertise. We compute a
Herfindahl-Hirschman Index (HHI) based on the distribution of its publications across proteins,
where lower values indicate a broader spread of its past research activity. A firm is classified as
having a broader experience base if it exhibits a below-median HHI. This approach parallels Arts
et al. (2025), who use an HHI across technology classes to assess whether firms are specialized in

a narrow set of technologies. See Appendix B for more details and examples from our data.

4.2.3. Genetic Distance

To capture generalization across related genetic targets, we use a novel measure of distance based
on protein-protein interactions from the STRING database (Szklarczyk et al., 2025). In this dataset,
functional proximity between proteins is inferred from the frequency and strength of their interac-
tions in human biological processes. STRING compiles and quantifies all available evidence on
protein-protein associations, assigning each pair a combined confidence score that reflects the
biological relevance of the interaction. This provides a biologically grounded measure of func-
tional proximity, indicating how much feedback from one target is likely to inform others. For
instance, the proteins BACE1 and BACE?2 share key biological functions, which is reflected in
their high interaction score (Appendix Figure B3). A key advantage of the STRING data is that it
is disease-agnostic, making it particularly well-suited for studying learning in drug development,
where firms often leverage the same drug target across multiple therapeutic areas. This contrasts
with disease-specific approaches that rely on structural similarity, such as studying the relatedness

of cancers through shared mutations (Kang, 2025).

4.2.4. Underlying Genetic Merit

To measure the underlying therapeutic potential of a drug target, we use the Open Targets score, a

synthetic indicator developed by the Open Targets Platform (Buniello et al., 2025). Open Targets
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is a public-private initiative that aggregates and weights all available evidence on protein-disease
pairs to support clinical prioritization. It is widely regarded as the most comprehensive source of
curated information on the genetic basis of human diseases. Each score reflects the strength of
direct evidence linking a protein to a disease as of 2025, adjusted for the quality and reliability
of the source. Recent research shows that Open Targets scores are predictive of clinical success
(Razuvayevskaya et al., 2024) and are positively associated with the technological and economic
value of patents targeting that protein-disease pair (Tranchero, 2024). We merge these publicly
available scores with our data using Gene IDs and MeSH terms. The resulting data offer us a
benchmark for evaluating the intrinsic promise of protein-disease combinations independent of
firms’ patenting behavior. This allows us to assess both errors of commission (when firms pursue
weak alternatives) and errors of omission (when they ignore more promising ones) in the context

of drug target selection.

4.3. MAPPING THE MODEL TO THE EMPIRICAL SETTING

The computational model developed in Section 3 describes organizations facing a stream of alter-
natives, updating their beliefs after observing each outcome, and generalizing feedback to related
options in a trait space. In the empirical context of pharmaceutical R&D, these features map di-
rectly onto the search for drug targets. Protein—disease pairs represent the alternatives available
to firms, while functional relatedness among proteins defines their relative position in the search
space. We measure this relatedness using STRING protein—protein interaction scores, which pro-
vide an analogue to distances in the model. The merit of each protein—disease pair is captured

by its Open Target score, which aggregates available scientific evidence. This corresponds to the
“fitness” values in the model, with the interaction between distance and promise determining the
degree of spatial autocorrelation, or landscape ruggedness. This setup allows us to test whether
firms generalize feedback from failed trials to closely related proteins. Figure 4 shows the parallel

between model and empirics using data on BACE1 and related drug targets for Alzheimer’s.

[INSERT FIGURE 4 ABOUT HERE]

Feedback in the model arrives in the form of binary success or failure. Mimicking this feature,

in our setting, pharmaceutical firms receive such feedback through the discrete outcome of clini-
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cal trials. Finally, patent applications filed by firms provide a proxy for where firms are directing
their investments. By relating changes in patenting activity to the timing and location of trial dis-
continuations, we can estimate both the direct effect of failure on the focal target and the indirect
effects on genetically proximate targets.

The model further predicts that the extent of generalization is contingent on the structure of or-
ganizations’ prior experience. We operationalize this prediction using two dimensions of firms’
publication portfolios: their level of experience with a given protein and the concentration of
their expertise across proteins. Firms without prior publications on a target represent cases of
limited direct knowledge, whereas firms with highly concentrated publication activity reflect nar-
rower domains of expertise. We conduct split-sample analyses along these dimensions to assess
whether such firms exhibit stronger spillovers from clinical trial failures, as the model implies.
Taken together, this empirical setting provides a unique bridge from theoretical constructs to ob-

servable organizational behavior, allowing us to test our model-derived hypotheses.

4.4. DESCRIPTIVE STATISTICS

Table 1 presents summary statistics at the level of protein-disease combinations, which constitute
our primary unit of analysis. Panel A reports cross-sectional characteristics of the potential tar-
gets that pharmaceutical firms may pursue. The dataset includes 7,788,369 protein-disease pairs,
constructed from 483 diseases and 16,136 human proteins featured in USPTO patents. We ob-
serve 8,683 unique phase II and III clinical trials, of which 1,578 were terminated prior to com-
pletion and are classified as failures. The clinical trials in our data provide direct information on
7,007 protein-disease pairs and generate indirect information — through varying levels of func-
tional proximity — on an additional 2,283,284 pairs that are related to failed targets.

Panel B presents descriptive statistics for the panel dataset of protein-disease combinations
observed annually from 2001 to 2019. On average, a protein-disease pair receives 0.084 patent
applications per year, although the distribution is highly skewed, with some drug targets receiving
more than 1,400 applications in a single year. We also split patenting activity by firms’ experi-
ence bases. Roughly three-quarters of all applications originate from organizations with a higher
level of experience, proxied by prior publications on the protein in question. Firms whose publi-

cation portfolios are concentrated on a narrow set of proteins account for 0.02 patents per protein-
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disease pair per year, representing 20% of total patenting. Finally, Panel B compares patenting
intensity by underlying scientific merit, as measured by the Open Targets score. Protein-disease
pairs with a positive score receive significantly more patenting on average (0.63) than those with

no score (0.052), although the latter constitute the majority of the sample.

[INSERT TABLE 1 ABOUT HERE]

5. RESULTS

We empirically estimate how firm patenting changes following a trial failure in a difference-in-
difference design at the protein-disease pair level. In what follows, we discuss the research design

and present the main results testing the hypotheses derived from the model.

S5.1. RESEARCH DESIGN

Empirically studying how firms learn from failure presents two main challenges. The first is
about measurement: knowing which actions a firm has taken and what feedback it has received.
Without clear information on both, linking observed behavior to the underlying learning process
is impossible. The second challenge concerns causal inference. Firms are more likely to exper-
iment in areas where they already have expertise, such as genes they have previously (success-
fully) studied, which can bias estimates upward. In an ideal setting, firms would receive randomly
assigned information about the therapeutic potential of specific protein-disease pairs. This would
allow researchers to isolate the causal effect of such information. The impact would then be re-
vealed by changes in patenting activity on treated protein-disease pairs relative to those left unaf-
fected.

We approximate this ideal experiment using the staggered timing of clinical trial discontinu-
ations. These events are publicly reported and provide shared information to all pharmaceutical
firms, independent of their internal data or capabilities. Following Krieger (2021), we examine
how firms respond to the failures of other companies, which helps mitigate concerns about endo-
geneity between firms’ prior research choices and the feedback they receive. Since firms do not

conduct trials with the expectation of failure, these discontinuations are largely unexpected by the

21



sponsoring firms and even more so by the other firms that later learn about the news. This setting
offers a rare opportunity to study how organizations change their behavior in response to publicly
disclosed negative outcomes.

An important strength of our approach is that it overcomes well-documented pitfalls in the
empirical study of organizational learning. Traditionally, this strand of research has used the cu-
mulative counts of past failures to predict performance changes. However, relying on cumulative
variables can produce significant results even in the absence of real learning effects (Bennett and
Snyder, 2017). The danger is that spurious correlations between past failures and future outcomes
mechanically arise from time trends in cumulative counts. By contrast, the discontinuation of
a clinical trial constitutes a discrete and externally visible shock (Krieger, 2021). This feature
allows us to separate genuine behavioral adjustments from statistical artifacts. More broadly, it
provides an empirical design that is well-suited to testing the model’s predictions, since it yields
exogenous variation in organizational feedback that can be directly traced to subsequent search

behavior.

5.2.  VALIDATION OF THE RESEARCH DESIGN

We first validate whether clinical trial failures act as unanticipated learning shocks by examining
their impact on subsequent innovation in the same protein-disease pair. To do so, we estimate
their direct learning effect with a difference-in-differences specification at the protein-disease
level:
Y; i+ = o+ BPost, x ClinicalTrial; ; X Failure; j + yPD; ; + 0 Protein; + wDisease; + oY eary + €; j ¢,
“)
where Y ; ; denotes the number of patent applications filed in year ¢ for inventions targeting pro-
tein ¢ and disease j. The key regressor is the interaction Post; x ClinicalTrial;; x Failure, j,
which captures whether a trial by another firm on protein-disease pair < %, > was discontin-
ued before completion and whether the year ¢ falls after this event. Fixed effects at the protein-
disease, protein, disease, and year levels account for differences in baseline research intensity and
trends across technologies and therapeutic areas. Standard errors are clustered by protein and
disease. The coefficient of interest, 3, isolates the effect of trial discontinuations on innovation

efforts directed at the same protein-disease pair.
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[INSERT TABLE 2 ABOUT HERE]

Columns 1 and 2 of Table 2 report the baseline results. While the conclusion of a clinical trial
generally results in more patenting applications, there is a large and statistically significant de-
cline following an early termination. Appendix Figure C1 further explores the stability of the
difference-in-difference coeflicient to alternative fixed effect structures. Interestingly, the inclu-
sion of protein-disease pair fixed effects seems to have the largest impact on the magnitude of the
coefficient. This pattern indicates that part of the raw effect reflects stable cross-sectional dif-
ferences in investment intensity across protein-disease pairs, which are absorbed by the granular
pair-level fixed effects, while the remaining effect captures within-pair changes in response to
failure. Additional robustness checks show that results are unchanged if we focus exclusively on
early terminations of Phase II clinical trials (Appendix Table C1).

The central identifying assumption of our difference-in-differences design is that, absent a
trial discontinuation, patenting trends for failed pairs would have evolved in parallel to those
for completed pairs. Figure 5 provides a direct test of this assumption using an event study ver-
sion of Equation 4. The plot shows flat and statistically indistinguishable pre-trends and a sus-
tained decline in patenting after the public disclosure of a failure on ClinicalTrials.gov. Post-
treatment estimates stabilize at a level consistent with the average treatment effect reported in
Table 2. Taken together, these results demonstrate that clinical trial failures act as well-identified
negative feedback for firms, in line with prior work on organizational responses to failure (Greve,

2003; Krieger, 2021).

[INSERT FIGURE 5 ABOUT HERE]

5.3. TESTING THE THEORETICAL PREDICTIONS

We next examine whether clinical trial failures generate spillover effects on related protein—disease
pairs rather than only affecting the targets directly tested. Specifically, given a clinical trial on a
protein—disease pair < 7,7 >, we estimate a difference-in-differences regression for functionally

related protein—disease pairs < p, q >:
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Yp.qt = a+ B Posty x ClinicalTrialpl?q(i’j) x Failure; j +vPD, 4 + 0 Protein, + wDiseaseq + oY ear; + €p g+,
®)

where Y}, , ; denotes the number of patent applications filed in year ¢ for protein p and disease
q, excluding the pair that received the clinical trial. C'linical Tm'alp%(i’j ) equals one if < p,q >
lies in distance quartile D (with 1 < D < 4) from the failed pair < 7,5 >. As before, the indi-
cator Fatlure; ; equals one if protein—disease pair < ¢,j > experienced a clinical trial discon-
tinuation. The triple interaction with Post; captures whether spillover pairs in a given quartile
exhibit different post-failure dynamics relative to pairs equally distant from a successful trial.
Fixed effects at the protein—disease (yPD,, ,), protein (d Protein,,), disease (wDisease,), and
year (oY ear;) levels absorb baseline heterogeneity and common trends. Standard errors are clus-
tered by protein and by disease. The coefficient of interest, /3, identifies the change in patenting
for neighboring pairs within quartile D after a trial discontinuation, thereby isolating the general-
ization effect.

Our results show that clinical failures reverberate beyond the directly tested targets. Columns 3
and 4 of Table 2 show clear evidence of negative spillovers, with an average decline in patenting
of 17.8% relative to the sample mean. Panel (a) of Figure 6 formally tests Hypothesis 1 by divid-
ing proteins into quartiles based on their genetic distance from the nearest protein-disease pair
subject to a clinical trial. The observed pattern closely mirrors the model’s predictions, previ-
ously shown in Figure 1. Firms reduce innovation activity on protein-disease pairs that are func-
tionally close to failed targets, with the effect steadily weakening across quartiles. The negative
spillover becomes statistically insignificant only for the most distant group. In terms of magni-
tude, the generalization effect for the closest quartile is about 6% as large as the direct impact of a
clinical trial failure. These results provide strong support for Hypothesis 1 and suggest that firms

generalize in a distance-dependent manner from the focal alternative.®

[INSERT FIGURE 6 ABOUT HERE]

8 As a falsification test, we examine whether spillovers increase when the trial signal is stronger. We use enroll-
ment size as a proxy for signal strength, since larger trials provide more precise clinical evidence. Appendix Table
C3 shows that failures of higher—enrollment trials generate larger spillovers onto related targets. This test is con-
sistent with the intuition that firms generalize more when the feedback is clearer, and offers some additional face
validity to our empirical exercise.
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However, these average effects conceal important heterogeneity. Panel (b) of Figure 6 sepa-
rates protein—disease pairs into high- and low-merit categories, using the Open Targets score as
an indicator of scientific potential, with supporting regressions reported in Appendix Table C4.
The results show that generalization reduces patenting on low-merit targets, consistent with a de-
cline in commission errors. At the same time, it also reduces patenting on high-merit targets, im-
plying an increase in omission errors. The effect is substantially larger for high-merit alternatives,
reflecting the same asymmetric effects predicted by Hypothesis 2. Because firms tend to concen-
trate on a narrow set of well-known proteins (Edwards et al., 2011), a failure involving a related
target generates a larger belief revision for high-merit alternatives.” As a result, even scientifi-
cally valuable opportunities may be abandoned, confirming a key cost of generalization driven by
post-decision surprise (Harrison and March, 1984).

Finally, we examine how firms vary in their tendency to generalize from failure, depending on
the level and concentration of their prior experience. Figure 7 presents these results, with sup-
porting regressions reported in Appendix Tables C5 and C6. Panel (a) compares firms with prior
scientific publications on the drug target to those without. While both groups reduce patenting
as genetic distance from the failed target increases, the decline is smaller for more experienced
firms, suggesting they generalize less. Panel (b) compares firms by the concentration of their
prior scientific publications across proteins. Firms whose research is concentrated on a small set
of proteins display stronger generalization effects, consistent with reliance on a narrow knowledge
base that amplifies the need to infer from related targets. Both patterns confirm the model pre-
dictions in Figure 3 and support Hypotheses 3A and 3B. These results suggest that generalization
operates as a partial substitute for experience: firms with limited or highly concentrated expertise
depend on it more, but in doing so become more prone to abandoning high-potential opportuni-

ties.
[INSERT FIGURE 7 ABOUT HERE]

Taken together, the empirical evidence closely aligns with the predictions of our theoretical

The difference in magnitude between the model and the empirical estimates is consistent with how belief con-
centration shapes generalization. In the model, the asymmetry between high- and low-merit alternatives becomes
stronger when organizations hold more focused beliefs; i.e., when their priors are concentrated on a smaller set of
promising opportunities. Under these conditions, failures trigger larger downward revisions for high-merit alterna-
tives, closely matching patterns observed in the context of drug discovery.
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framework. Firms learn directly from failures and generalize this feedback to biologically re-
lated opportunities in a distance-dependent way. This process reduces investment in low-quality
projects, but also deters organizations from pursuing high-potential, proximate ones. This creates
the asymmetry between omission and commission errors predicted by the model. The extent of
generalization varies systematically with prior experience, being greater when firms’ knowledge
is limited or highly concentrated. Overall, the findings highlight both the value and the pitfalls of

generalization, showing how it fundamentally shapes the direction of organizational search.

6. DISCUSSION AND CONCLUSION

Organizations rarely have the luxury of abundant experience. They learn, instead, in environ-
ments where histories are thin, signals are noisy, opportunities far exceed what can be directly
explored due to high costs, and their choices often entail a degree of irreversibility (Adner and
Levinthal, 2024). In such contexts, organizations may compensate by generalizing — extrapolat-
ing their experience from one domain to related but untested alternatives. Through generaliza-
tion, organizations can augment meager experience and form beliefs about the merit of adjacent
possibilities.

Yet, how organizations generalize and the consequences of this mechanism remain insuffi-
ciently understood. This paper presents theory and evidence on the conditions and organizational
contingencies that make generalization more valuable to firms. Our computational model formal-
izes how organizations extend feedback from tested to untested alternatives, with the effect de-
caying smoothly with distance from the focal option. This process generates spillovers to neigh-
boring opportunities, offering a cognitive microfoundation for the diffusion of learning observed
not only across firms (Krieger, 2021), but also across activities and projects within firms (Eggers,
2012a; Zollo and Reuer, 2010). By modeling generalization as distance-dependent rather than
categorical, we show how it can both accelerate adaptation under limited experience and shape
systematic patterns of belief propagation within and across organizational boundaries.

We evaluate the predictions of the model in the context of pharmaceutical innovation, a do-
main where direct experience is highly constrained. The evidence shows how firms rely on gener-

alization as a means to enrich sparse feedback, extrapolating lessons from known to related drug
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targets. However, this mechanism is a double-edged sword. Generalization reduces variance in
beliefs by aggregating across related experiences, enabling organizations to avoid overreacting
to noise and to form reasonable estimates about unsampled options. At the same time, it intro-
duces bias by increasing omission errors, as promising opportunities are abandoned when they
resemble past failures. Negative spillovers are disproportionately concentrated on valuable alter-
natives, amplifying omission errors and reinforcing the “hot stove” effect (Denrell and March,
2001). Generalization, therefore, introduces a fundamental bias—variance tradeoff in organiza-
tional learning: it stabilizes belief updating under sparse feedback, but at the cost of systemati-
cally overlooking some valuable alternatives.

Organizations form beliefs (Posen and Levinthal, 2012), mental representations (Gavetti and
Levinthal, 2000; Csaszar and Levinthal, 2016), and theories (Felin and Zenger, 2009) about the
domains in which they search. These cognitive processes guide where they search, what choices
they make, and the performance feedback they receive. In this regard, experience is endogenous
(Denrell and March, 2001), and the challenges and myopias inherent to learning given this en-
dogeneity have been well documented (Levinthal and March, 1993). Yet much of our theorizing
assumes ample experience. In reality, as March et al. (1991) reminds us, organizations often op-
erate with meager “samples of one or fewer”. By foregrounding generalization as a partial sub-
stitute for direct experience, we reveal both its promise and its pitfalls as an adaptive mechanism,
offering new insights into how organizations adapt when experience is scarce — the very condi-

tions under which learning matters most.
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7. FIGURES AND TABLES

Figure 1: Generalization Leads to a Distance-Dependent Spillover Effect in Learning.
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Note: The figure plots the effect of negative performance feedback on the probability that an orga-
nization accepts an alternative in the subsequent period, as a function of its distance from the focal
alternative. For visual clarity, the degree of generalization (tuned by the parameter «) is held constant
and equal to 0.8. See text for details.
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Figure 2: Generalization as a Function of the Underlying Merit of the Alternative.

Spillover Effects by Merit (a = 0.8)
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Note: The figure shows the change in the probability of accepting an alternative in the subsequent
period for alternatives at varying levels of distance from the focal alternative, reported separately by
different underlying merit. Low merit alternatives have an expected value less than the default payoff
from rejecting an alternative (0.5). In comparison, high-merit alternatives have a value greater than or
equal to the default payoft. For visual clarity, the degree of generalization (tuned by the parameter o)
is held constant and equal to 0.8. See text for details.
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Figure 3: Organizational Heterogeneity in the Degree of Generalization.

(a) Optimal Degree of Generalization (a*) Varying the Level of Orga-
nizational Experience
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(b) Optimal Degree of Generalization (a*) Varying the Concentration
of Organizational Experience
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Note: The figure presents heterogeneity in the optimal degree of generalization (a*) depending on the level and
concentration of organizations’ pre-entry experience. Panel (a) holds the concentration of experience constant and
equal to 0, such that pre-entry experience is a simple random sample of alternatives. Panel (b) holds the length of the
pre-entry learning period constant and equal to 50, but changes the concentration of this experience across alterna-
tives. See text for details.
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Figure 4: Mapping the Model to the Empirical Setting.

(a) In the Model, Organizations Search among Alternatives with
Varying Fitness.
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(b) In the Data, Pharmaceutical Firms Search among Drug Targets
with Varying Open Target Scores.
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Note: The figure presents an intuitive representation to map the computational model to our empirical setting. Panel
(a) shows a representation of the fitness landscape where organizations search for the best alternative. Panel (b)
depicts a portion of our data on drug targets for Alzheimer’s disease, focusing on the BACEI protein and drug targets
closely related to it (arranged by relative distance on the X-axis). Like in the model, pharmaceutical firms search for
the best drug targets among alternative proteins. See text for details.
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Figure 5: Patents on Focal Protein-Disease Pair Following a Clinical Failure.
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Note: The figure shows the event study coefficients estimated from the following panel OLS specification:

Yij¢ = a4+ >, B.ClinicalTrial;; x Failure;; x 1(z) + vPD;; + 0Protein; + wDisease; + oYears + €. The
dependent variable is the number of USPTO patent applications for innovations focusing on a specific protein-
disease combination < 4,5 > in a given year t. The chart plots values of 3, for different lags z before and after the
failure of the first phase II or phase III clinical trial targeting the protein-disease pair. Regressions include protein,

disease, and year fixed effects, as well as protein-disease combination fixed effects. Standard errors are clustered at
the protein-disease level. See text for details.
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Figure 6: Patents on Related Protein-Disease Pairs Following a Clinical Failure.
(a) Generalization of Clinical Trial Failures.
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(b) Generalization of Clinical Trial Failures by Underlying Merit.
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Note: The figure presents the spillover effects of clinical failures on drug targets functionally close to the failed
target. Panel (a) shows the decrease in patenting for protein-disease pairs at varying levels of biological relatedness
to the genetic targets of failed clinical trials. Panel (b) shows the decrease in patenting for protein-disease pairs at
varying levels of biological relatedness to the genetic targets of failed clinical trials, reported separately for pairs
with different underlying merit. Low-merit pairs are defined as those with an Open Targets Score of zero, while
high-merit pairs have a positive score. The regressions use standardized variables to enable comparison across split-

sample regressions based on Equation 5 (i.e., bars represent beta coefficients). Standard errors are clustered at the
protein-disease level. See text for details.
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Figure 7: Firm Heterogeneity in Patenting Behavior Following a Clinical Trial Failure.

(a) Generalization by Level of Firm Experience.
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(b) Generalization by Concentration of Firm Experience.
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Note: The figure presents heterogeneity in the extent to which firms generalize from clinical failures depending on
their level and concentration of experience. Panel (a) shows the decrease in patenting for protein-disease pairs at
varying levels of biological relatedness to the genetic targets of failed clinical trials, reported separately for firms
with differing levels of genetic experience. Firms with a low level of experience are defined as those lacking prior
publications on the protein. Panel (b) shows the decrease in patenting for protein-disease pairs at varying levels

of biological relatedness to the genetic targets of failed clinical trials, reported separately for firms with above or
below the median concentration of genetic experience. Firms with a low concentration of experience are defined as
those whose publications are spread more evenly across proteins, as measured by the HHI index. The bars represent

standardized beta coefficients to enable comparison across split sample regressions based on Equation 5. See text for
details.
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Table 1: Descriptive statistics.

Panel A: cross sectional descriptives

mean median std min  max N
Total patent applications 1.597 0 19.106 0 13900 7,788,369
Ever received clinical trial 0.000900 0 0.030 0 1 7,788,369
Ever received terminated clinical trial 0.000244 0 0.0156 0 1 7,788,369
Ever spillovers from clinical trial 0.2930 0 0.455 0 1 7,788,369
Ever spillovers from terminated clinical trial 0.0617 0 0.241 0 1 7,788,369
Average Protein-Protein Distance 85.203 0 160.909 0 999 7,788,369
Average Open Target score 0.00169 0 0.0187 0 0.908 7,788,369

Panel B: panel descriptives

mean median std min  max N

Yearly patent applications 0.0840 0 1.310 0 1465 147,979,011
... by firms with high level of experience 0.0233 0 0.830 0 1340 147,979,011
... by firms with low level of experience 0.0608 0 0.737 0 1261 147,979,011
... by firms with high concentration of experience 0.0172 0 0.322 0 298 147,979,011
... by firms with low concentration of experience 0.0669 0 1.107 0 1403 147,979,011
Yearly patent applications targeting high merit pairs  0.6310 0 4.287 0 1465 8,290,175

Yearly patent applications targeting low merit pairs ~ 0.0520 0 0.842 0 1079 139,688,836
Post Clinical Trial (Direct) 0.0005 0 0.0216 0 1 147,979,011
Post Clinical Trial (Spillover) 0.1590 0 0.3660 0 1 147,979,011
Year 2010 2010 5477 2001 2019 147,979,011

Note: This table lists summary statistics at the protein-disease level for 7,788,369 pairs (Panel A) and
at the protein-disease-year level for a balanced panel of 147,979,011 observations (Panel B). Total
patent applications: count of USPTO patent applications for inventions targeting a given protein-
disease pair; Ever received clinical trial: 0/1 = 1 for protein-disease pairs that have been directly
targeted by a phase II or phase III clinical trial; Ever received terminated clinical trial: 0/1 =1 for
protein-disease pairs that have been directly targeted by a phase II or phase III clinical trial that has
been terminated; Ever spillovers from clinical trial: 0/1 = 1 for protein-disease pairs genetically re-
lated to targets of a phase II or phase III clinical trial; Ever spillovers from terminated clinical trial:

0/1 = 1 for protein-disease pairs genetically related to targets of a phase II or phase III clinical trial that
has been terminated; Average Protein-Protein Distance: average combined score of a protein-protein
interaction in the STRING database; Average Open Target score: average value of the Open Target
score; Yearly patent applications: count of yearly USPTO patent applications for inventions targeting
a given protein-disease pair; Yearly patent applications by firms with high level of experience: count
of yearly USPTO patent applications for inventions targeting a given protein-disease pair filed by

firms with previous publications on the protein involved; Yearly patent applications by firms with

low level of experience: count of yearly USPTO patent applications for inventions targeting a given
protein-disease pair filed by firms without previous publications on the protein involved; Yearly patent
applications by firms with high concentration of experience: count of yearly USPTO patent appli-
cations for inventions targeting a given protein-disease pair filed by firms with previous publications
concentrated on a narrow set of proteins; Yearly patent applications by firms with low concentration of
experience: count of yearly USPTO patent applications for inventions targeting a given protein-disease
pair filed by firms with previous publications spread more evenly across proteins, as measured by the
HHI index; Yearly patent applications targeting high merit pairs: count of yearly USPTO patent ap-
plications for inventions targeting a given protein-disease pair with an Open Target score greater than
zero; Yearly patent applications targeting low merit pairs: count of yearly USPTO patent applications
for inventions targeting a given protein-disease pair with an Open Target score equal to zero; Post
Clinical Trial (Direct): 0/1 = 1 in all years after conclusion of the first phase 2 or 3 clinical trial tar-
geting a focal protein-disease pair; Post Clinical Trial (Spillover): 0/1 = 1 in all years after conclusion
of the first phase 2 or 3 clinical trial targeting a genetically related protein-disease pair; Year= average

year of observations in the panel.
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Table 2: Direct and Spillover Effects of Clinical Trial Failures on Pharmaceutical Firm Patenting.

Firm Patents Targeting a Protein-Disease Pair

(1 (2) (3) 4)
Post x Clinical Trial (Direct) 0.980*** 1.110**
(0.123) (0.000650)
. X Failure -0.459*
(0.164)
Post x Clinical Trial (Spillover) 0.0269*** 0.0302***
(0.000630)  (0.000713)
. X Failure -0.0146***
(0.00147)
Protein-disease FE YES YES YES YES
Protein FE YES YES YES YES
Disease FE YES YES YES YES
Year FE YES YES YES YES
Observations 147,979,011 147,979,011 147,845,878 147,845,878

Note: *, ** *** denote significance at the 5%, 1%, and 0.1% level, respectively. Difference-in-
differences panel regressions at the protein-disease-year level. Std. err. clustered at the protein-disease
level. All models include protein-disease pair, disease, protein, and year fixed effects. The sample

in columns (1) and (2) includes all protein-disease pairs, while columns (3) and (4) exclude protein-
disease pairs that directly received a clinical trial. Firm Patents Targeting a Protein-Disease Pair:
yearly count of USPTO patent applications granted to pharmaceutical firms for inventions targeting a
specific protein-disease pair; Post X Clinical Trial (Direct): 0/1 = 1 in all years after conclusion of the
first phase II or III clinical trial targeting a focal protein-disease pair; Post x Clinical Trial (Spillover):
0/1 = 1 in all years after conclusion of the first phase II or III clinical trial targeting a genetically
related protein-disease pair; Failure: 0/1 = 1 for clinical trials that are terminated before their natural
completion. See text for details.

40



Learning About Roads Not Taken
Appendix

A. MODEL EXTENSIONS AND ROBUSTNESS CHECKS

SPILLOVER EFFECTS FOLLOWING SUCCESS:

While the main analysis highlights the effects of generalization following failure, it is also im-
portant to assess the effects of generalization following positive performance feedback. As such,
in Figure A.1 we plot the change in the probability of accepting an alternative given its distance
from the focal alternative. For simplicity, we hold the degree of generalization («) constant and
equal to 0.8. Ultimately, we find that generalization produces a positive spillover effect such that
there is an increase in the probability of accepting similar alternatives. For example, the mean in-
crease in the probability of accepting an alternative at a distance between 1 and 5 from the focal
alternative is equal to approximately 0.12 following a success.

Figure A.1: Generalization Following Success.
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Note: The figure shows the effects of positive performance feedback on the probability of an organiza-
tion accepting an alternative in the subsequent period. The effect is plotted as a function of its distance
from the focal alternative. For visual clarity, the degree of generalization (tuned by the parameter «) is
held constant and equal to 0.8. See text for details.

Furthermore, the main analysis highlights that the magnitude of the spillover (generalization)
effect following failure is a function of the underlying merit of the alternative. We now assess the



implications of organizations’ generalizing positive feedback on alternatives with varying under-
lying merit. This result is plotted in Figure A.2, which plots, as a function of the distance from
the focal alternative, the change in the probability of accepting an alternative that is either latently
promising or unpromising. For visual clarity, we fix & = 0.8 and classify alternatives as high or
low merit relative to the default payoff from rejecting an alternative (0.5). We find that generaliz-
ing positive performance feedback leads to an increase in commission errors (as the organization
increases its probability of accepting a similar, low-merit alternative) and a reduction in omission
errors (an increased probability of accepting similar, high-merit alternatives). Consistent with
the post-decision surprise mechanism described in the main text, there is an asymmetry in the
magnitude of these effects such that there is a comparatively larger increase in the probability of
accepting a similar, low-merit alternative than a similar, high-merit one.

However, it is worth noting that while these results following success are symmetric to the
reported results following failure, they are not of equal magnitude. Notably, the generalization
effect is stronger following failure than success. For example, the average increase in the accep-
tance probability for the 1-5 distance bin is approximately 0.12 following success, relative to a de-
cline of roughly 0.143 following failure. Furthermore, following success, there is an average in-
crease in the acceptance probability of 0.113 for high-merit alternatives and an increase of 0.128
for low-merit ones. In contrast, following failure, there is a decline in the acceptance probability
of 0.136 and 0.15 for low- and high-merit alternatives, respectively.

Figure A.2: Generalization Following Success by Underlying Merit of the Alternative.
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Note: The figure shows the change in the probability of accepting an alternative in the subsequent
period, following positive performance feedback, for alternatives at varying levels of distance from the
focal alternative, reported separately by different underlying merit. Low-merit alternatives have an ex-
pected value less than the default payoff from rejecting an alternative (0.5). In comparison, high-merit
alternatives have a value greater than or equal to the default payoff. For visual clarity, the degree of
generalization (tuned by the parameter «) is held constant and equal to 0.8. See text for details.



SPILLOVER EFFECTS VARYING GENERALIZATION:

The main analysis highlights that generalization reduces the probability of accepting both the fo-
cal alternative and related alternatives following failure. Further, while Figure 1 highlights that
the magnitude of this reduction is a function of the distance between the accepted alternative and
the related alternative, it is also important to note how the extent of generalization (o) shapes the
magnitude of this effect. In Figure A.3 we plot the change in acceptance probability of alterna-
tives varying in their distance from the focal alternative for alternative levels of generalization
(o). Ultimately, while the extent of generalization does not dramatically affect the magnitude of
the direct effect (the change in acceptance probability for the focal alternative), it does affect the
magnitude of the spillover effect. For example, the mean reduction in the probability of accepting
an alternative at a distance between 1 and 5 is equal to approximately 0.143 when « = 0.8, but is
reduced to approximately 0.07 when a = 0.6.

Figure A.3: Spillover Effects Varying the Degree of Generalization ().
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Note: The figure shows the effects of negative performance feedback on the probability of an organiza-
tion accepting an alternative in the subsequent period. The effect is plotted as a function of its distance
from the focal alternative and the degree to which the organization generalizes its experience (tuned by
the parameter ). See text for details.



SPILLOVER EFFECTS BY MERIT:

The main analysis highlights that generalization produces a spillover effect and that the magni-
tude of this spillover effect is a function of the underlying merit of the alternative. We now assess
the robustness of these findings across a wide range of alternative parameter settings. As such,
Figure A.4 plots the distribution of changes in the probability of accepting either a high- or low-
merit alternative in the subsequent period following failure. As with the main analysis, we clas-
sify alternatives as high or low merit relative to the default payoft the organization would receive
from rejecting an alternative (0.5). More specifically, high-merit alternatives have an expected
value greater than or equal to 0.5, while low-merit alternatives have an expected value below 0.5.
For visual clarity, we plot the spillover effect only for those alternatives with an absolute distance
of 1-5 from the focal alternative and hold the generalization parameter « constant and equal to
0.8.

Panel A plots these results, varying the lengthscale parameter (), thereby allowing us to as-
sess the sensitivity of our findings to the underlying level of spatial correlation in the task envi-
ronment. Specifically, we highlight A values approaching 0 (a setting where each alternative is an
iid draw from the generating distribution), the baseline setting of A = 1 (which results in the spa-
tial correlation across adjacent alternatives being approximately equal to 0.6), and A\ = 2, a setting
where alternatives are very highly correlated (with the spatial correlation across adjacent alter-
natives being approximately 0.9). Ultimately, while the lengthscale parameter affects the optimal
degree of generalization (see Figures A.5 and A.6), it has only a minimal effect on the presence
of this spillover effect, the magnitude of the effect, and that the spillover effect is greater for high-
merit than low-merit alternatives.

Panel B plots these results, varying the size of the search space between a setting with fewer
alternatives (25 alternatives instead of the 50 alternatives in the baseline setting) and a setting
where the number of alternatives is of the same scale as the number of periods (100). Ultimately,
over the range of values considered, the number of alternatives has only a minimal effect on the
presence of this spillover effect, the magnitude of the effect, and the relative magnitude of this
spillover effect for high- and low-merit alternatives. Turning to Panel C, we assess the effect of
tuning the magnitude of the learning rate (¢). Specifically, when ¢ is decreased from 0.5 to 0.25
(a slower learning rate), the magnitude of the spillover effect is attenuated, whereas increasing ¢
to 0.75 has the opposite effect. The dependence of the spillover magnitude on the learning rate
is expected, given that the effective updating rate at any distance is jointly governed by ¢ and «.
Notably, while ¢ shifts the magnitude of this spillover effect, we continue to observe that the me-
dian change in the probability of accepting an alternative following negative performance feed-
back is greater for high-merit than low-merit alternatives. Finally, Panel D assesses the sensitivity
of our results to changes in the number of periods (T). The results are highly consistent for both
shorter (50 periods) and longer (500 periods) time horizons.
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Figure A.4: Spillover Effects at Distance 1-5 by Underlying Merit.
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Learning Rate (¢) Simulation Length (T)

I Low Merit [ High Merit

Note: The figure shows the change in the probability of accepting an alternative in the subsequent
period for alternatives with an absolute distance from the focal alternative between 1 and 5, reported
separately for low- and high-merit alternatives. Low-merit alternatives are defined as those with

an expected value less than the default payoff from rejecting an alternative (0.5), while high-merit
alternatives have a value greater than or equal to the default payoff. For visual clarity, the degree of
generalization (tuned by the parameter «) is held constant and equal to 0.8. Each panel varies one
parameter of the model while holding all other parameters constant and equal to the values employed
in the main analysis. See text for details.



LEVEL OF INITIAL EXPERIENCE:

While the main analysis highlights that the optimal degree of generalization declines as a func-
tion of the level of the organization’s prior experience base, it is important to assess the robust-
ness of these findings across a wide range of parameter settings. This analysis is presented in
Figure A.5 which plots how the optimal level of generalization shifts as a function of the length
of the pre-entry learning period m. Panel A highlights this result while varying the lengthscale
parameter (\). In doing so, we assess the sensitivity of our findings to the underlying level of spa-
tial correlation in the task environment. We find that in settings absent spatial correlation across
alternatives (\ = 0), the optimal level of generalization («*) is consistent and equal to 0, such that
organizational adaptation is best served by not engaging in generalization. Conversely, increas-
ing A to 2 has the effect of shifting the experience-a* curve upwards such that, over the range of
m values considered, adaptation is best served by a higher level of generalization than the base-
line setting of A = 1. Further, in this setting, the finding that the optimal level of generalization
declines as a function of experience is maintained.

Panel B plots these results while varying the size of the search space from 25 alternatives (a
smaller number of alternatives relative to the main analysis) to a setting where the number of al-
ternatives is of the same scale as the number of periods (100). Ultimately, we find, over the range
of the number of alternatives considered, that increased experience continues to have the effect
of reducing the optimal level of generalization. Furthermore, changing the number of alterna-
tives shifts the experience-a* curve up and down such that in settings with fewer alternatives,
organizational adaptation is best served by, on average, a lower level of generalization, whereas
in settings with a greater number of alternatives, optimal performance is associated with, on av-
erage, higher levels of generalization. Turning to Panel C, we assess the effect of tuning the mag-
nitude of the learning rate (¢). Specifically, when ¢ is decreased from 0.5 to 0.25, on average, the
optimal level of generalization increases (the experience-a* curve is shifted upwards), whereas
increasing ¢ has the opposite effect. Crucially, across the range of ¢ values considered, we con-
tinue to observe that increasing experience has the effect of reducing the level of generalization
associated with the greatest level of performance.

Finally, Panel D assesses the sensitivity of our results to changes in the length of the simula-
tion (7'). We find that when 7" is decreased from 100 to 50, on average, the optimal level of gen-
eralization increases (the experience-a* curve is shifted upwards), whereas increasing 7" has the
opposite effect. That shifting the time horizon under consideration has this effect on the level of
the experience-a* curve should not be surprising, as increasing the length of the simulation ef-
fectively shifts the level of experience from which the organization has to draw on in deciding
whether to accept or reject an alternative. Ultimately, while the length of the simulation shifts the
level of the experience-a* curve, the finding that the optimal degree of generalization declines as
a function of experience is maintained across the range of time periods considered.
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Figure A.5: Optimal Degree of Generalization (a*) by Experience Level
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Note: The figure presents heterogeneity in the optimal degree of generalization (a*) depending on
the level of organizations’ pre-entry experience. The concentration of experience (w) is held constant
and equal to 0, such that pre-entry experience is a simple random sample of alternatives. Each Panel
varies one parameter of the model while holding all other parameters constant and equal to the values

employed in the main analysis. See text for details.



CONCENTRATION OF INITIAL EXPERIENCE:

While the main analysis highlights that the optimal degree of generalization increases as a func-
tion of the level of concentration in the organization’s prior experience base, it is important to
assess the robustness of these findings across a wide range of parameter settings. This analysis is
presented in Figure A.6 which plots how the optimal level of generalization shifts as a function
of the concentration of the organization’s pre-entry experience w. Panel A highlights this result
while varying the lengthscale parameter (). In doing so, we assess the sensitivity of our find-
ings to the underlying level of spatial correlation in the task environment and find that in settings
absent spatial correlation across alternatives (A = 0), the optimal level of generalization (a*) is
consistent and equal to 0, such that organizational adaptation is best served by not engaging in
generalization. Conversely, increasing A to 2 has the effect of shifting the concentration-a* curve
upwards such that adaptation is, on average, best served by a higher level of generalization than in
the baseline setting of A = 1. Further, the finding that the optimal level of generalization increases
as a function of the level of concentration in experience is maintained.

Panel B plots these results while varying the size of the search space from a setting with 25
alternatives (a smaller number of alternatives than the 50 alternatives employed in the main anal-
ysis) to a setting where the number of alternatives is of the same scale as the number of periods
(100). We find, over the range of the number of alternatives considered, that increasingly con-
centrated experience continues to have the effect of increasing the optimal level of generalization.
Additionally, changing the number of alternatives shifts the concentration-a* curve up (down)
such that in settings with fewer (more) alternatives, organizational adaptation is best served by,
on average, a lower (higher) level of generalization. Turning to Panel C, we assess the effect of
tuning the magnitude of the learning rate (¢). Specifically, when ¢ is decreased from 0.5 to 0.25,
on average, the optimal level of generalization increases (the concentration-a* curve is shifted
upwards), whereas increasing ¢ to 0.75 has the opposite effect. Crucially, across the range of ¢
values considered, we continue to observe that increasing the concentration of experience reduces
the level of generalization associated with the greatest level of performance.

Finally, Panel D assesses the sensitivity of these results to changes in the length of the simula-
tion (7'). We find that when 7" is decreased from 100 to 50, on average, the optimal level of gener-
alization increases (the concentration-a* curve is shifted upwards), whereas increasing 7" has the
opposite effect. Further, while the length of the simulation shifts the level of the concentration-a*
curve, the finding that the optimal degree of generalization increases as a function of the concen-
tration of experience is consistent across the range of time periods considered.
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Figure A.6: Optimal Degree of Generalization (a*) by Experience Concentration
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Note: The figure presents heterogeneity in the optimal degree of generalization (a*) depending on the
concentration of organizations’ pre-entry experience. The level of experience (m) is held constant and
equal to 50. Each Panel varies one parameter of the model while holding all other parameters constant
and equal to the values employed in the main analysis. See text for details.



B. MEASUREMENT DETAILS

PHARMACEUTICAL FIRMS SEARCH IN A PROTEIN-DISEASE LANDSCAPE:

Our measurement strategy builds on the idea that firms search for valuable drug targets within

a vast landscape of protein—disease combinations. In our data, this landscape spans 16,136 hu-
man proteins and 483 diseases, generating more than 7.7 million possible pairs. The number of
proteins is slightly below the approximately 19,000 found in the human body because we restrict
attention to those mentioned at least once in a patent; however, results are robust to including pro-
teins with no recorded R&D activity. Each pair represents a potential direction for firms’ R&D,
and the distances among them define the topology of the search landscape commonly studied in
the organizational literature.

Figure B1: Clinical Trial Outcomes Provide Information about the Tested Protein-Disease Pair
and Neighboring Ones.

oo I3

Solanezumab did not meet the study’s primary endpoint.

Progress of Mild Alzheimer's Disease in Participants on Solanezumab Versus Placebo (EXPEDITION
3)

ClinicalTrials.gov ID @ NCT01900665

Sponsor @ Eli Lilly and Company

Information provided by @ Eli Lilly and Company (Responsible Party)
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Note: The figure provides a stylized illustration of how a clinical trial, such as Eli Lilly’s EXPEDITION 3 trial on
BACEI! inhibitors for Alzheimer’s disease, conveys information about a broader region of the firm’s search space.
The intensity of the red shading indicates the strength of the information transmitted at varying distances from
BACEI], with darker shades representing stronger signals. See text for details.

Mapping clinical trial outcomes onto this landscape is the first step in our analysis. A trial
that tests a specific protein—disease pair corresponds to an experiment at a single cell in the land-
scape. The outcome of that experiment provides feedback not only about the tested pair but also
about nearby regions. This structure allows us to examine both direct learning on the focal pro-
tein—disease pair and spillovers to related pairs at varying biological distances. Figure B1 pro-
vides a visual illustration. Empirically, we link trials to the landscape using information on the
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disease conditions studied in each trial, uniquely identified by MeSH IDs, and the proteins tar-
geted by the intervention, identified by NCBI's Gene IDs.!? Previous studies have used this ap-
proach to study Phase I trials (Kang, 2025); here, we focus on Phases II and III, where data cover-
age and reliability are substantially higher (Kao, 2025).

We then trace firm investments using USPTO patent applications. In collaboration with the
European Bioinformatics Institute, we use data compiled with SciBite’s TERMite software, which
extracts biological entities from full patent texts and links them to standardized identifiers (Gene
IDs for proteins and MeSH terms for diseases). TERMite is a proprietary tool specifically de-
signed for disambiguating biomedical text. These data, previously used and validated by Tranchero
(2024), have been shown to be highly accurate. This approach allows us to position each patent
application within the same landscape as the clinical trials. In turn, we can observe whether a
firm patents the exact protein—disease pair tested in a trial or a pair nearby in the landscape. Be-
cause project-level R&D spending data are rarely available, patent applications provide a real-
time proxy for where firms allocate resources early in the innovation process.

Finally, we measure firms’ prior knowledge using scientific publications from PubMed, pro-
cessed through open data released by PubTator3 (Wei et al., 2024). Each publication is tagged
with the same disease and protein identifiers mentioned above, as illustrated in Figure B2. We
link these publications to firms using affiliation data from Dimensions, allowing us to capture
each firm’s accumulated expertise with specific drug targets prior to patenting. Combining this
information with our clinical and patent data enables us to examine how the composition of a
firm’s knowledge base shapes its response to trial outcomes. In particular, we test whether firms
with deeper and broader genetic experience generalize less from failures, while those with nar-
rower or more limited experience generalize more.

Figure B2: Pubtator3 Data Extract the Proteins and Diseases Studied in Each Published Paper.

PubTator® Q NLM APl Tutorial

SHOW BIOCONCEPTS O
PMID21403391 Jan 1, 2011

Home
B GeNe

BACEI1 as a potential biomarker for

Saved O cHEMICAL [0 VARIANT
) Ospecies [ CELLLINE
8 Playlists Decourt B, Sabbagh MN e J Alzheimers Dis
[Isave  XShare 93Cite L Download B8 Add To Playlist
BIOCONCEPTS AND MENTIONS The diagnosis of (AD) relies principally on clinical
% GENE criteria for probable and possible as defined by the NINCDS-ADRDRA.
BACET 7 The field is desperately lacking of biological markers to assist with

diagnosis and verification of treatment efficacy. According to the
D 12 Consensus Report of the Working Group on Molecular and Biochemical
DEMENTIA 1 Markers of , in order to qualify as a biomarker the
sample in question must adhere to certain basic requirements, including the

Alilib s bns enfland mbhalmms anA A nvanbinga b frmamn bl NN

Note: The figure shows how PubTator3 annotated scientific articles by extracting the proteins and diseases mentioned
in their title and abstract. See text for details.

10We leverage the fact that proteins are coded by the homonym gene and thus use unique Gene IDs for our data
matching.
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DISTANCE AND FITNESS OF IN THE PROTEIN-DISEASE LANDSCAPE:

To study generalization empirically, we need a measure of distance between genetic targets. The
model predicts that firms generalize feedback from one alternative to others in proportion to their
similarity, with the effect decaying as distance increases. Capturing this mechanism in the data
requires a biologically meaningful measure of proximity between proteins that varies continu-
ously rather than relying on discrete categories or binary overlaps.

Figure B3: Examples of Functional Distance between Human Proteins in the STRING Database.

(a) Network of protein-protein interactions for the BACEI protein

RTN4

IGHV3-43D

(b) Functional distance between the BACEI and BACE?2 proteins

FUNCTIONAL  PHYSICAL (CO-COMPLEX)

Organism: Homo sapiens

BACE1 [ENSP00000318585] BACE2 [ENSP00000332979]

Bet 1; ible for the pi p ing of the Beta-secretase 2; Responsible for the proteolytic processing of the
amyloid precursor protein (APP). Cleaves at the N-terminus of the A- amyloid precursor protein (APP). Cleaves APP, between residues 690
beta peptide sequence, between residues 671 and 672 of APP, leads and 691, leading to the generation and extracellular release of beta-
to the generation and extracellular release of beta-cleaved soluble «> cleaved soluble APP, and a corresponding cell-associated C-terminal
APP, and a corresponding cell-associated C-terminal fragment which fragment which is later released by gamma-secretase. It has also
i later released by gamma-secretase. Cleaves CHL1 (By similarity). been shown that it can cleave APP between residues 671 and 672.
R also for the p of CLTRN in
pancreatic beta cells. Belongs to the peptidase A1 family.
See BACE1 i i network See BACE2 1 network

Combined confidence of the functional interaction: 0.909 (very high)

Note: Panel (a) plots the protein-protein associations network centered on the BACEI protein according to the data in
STRING. Panel (b) reports the details of the interaction between BACE1 and BACE2. See text for details.

We measure this proximity using STRING (https://string-db.org/), a database that in-
tegrates known and predicted protein—protein associations from five evidence channels: genomic
context predictions, high-throughput experiments, conserved co-expression, automated text min-
ing, and curated pathway databases (Szklarczyk et al., 2025). STRING combines these sources
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into a single confidence score for each protein-protein link, which we use as a continuous mea-
sure of functional relatedness. Higher scores denote closer proteins in the biological landscape
and thus greater potential for knowledge spillovers. Our conversations with chemistry researchers
confirmed that STRING is widely used in both medicinal chemistry and molecular biology. In
drug discovery, researchers use it to interpret large genomic data after perturbing a target and to
identify affected pathways. In experimental biology, it helps verify whether observed protein in-
teractions align with established functional links. These applications confirm that STRING cap-
tures the kind of biological proximity along which firms are likely to generalize feedback.

Figure B3 shows an example of how STRING captures functional proximity among proteins.
Panel (a) shows the network of associations centered on the BACE1 protein, while Panel (b) high-
lights its strong functional link with BACE2. As their names suggest, BACE1 and BACE2 are
homologous proteins belonging to the same gene family, formed by duplication of a common an-
cestral gene and sharing similar biochemical functions. BACE?2 shares approximately 64% amino
acid sequence similarity with BACE1 and participates in the same biological processes (Yeap
et al., 2023). To validate our measure, we verified that proteins from the same family exhibit
higher STRING proximity scores, on average 14% greater than for unrelated proteins. Impor-
tantly, STRING captures functional rather than purely structural similarity, which is appropriate
for our context since proteins can be structurally similar yet play distinct biological roles, just as
structurally dissimilar proteins can serve as functional substitutes.

As noted previously, we measure the “fitness” of each protein—disease pair using the Open
Targets score, which aggregates genetic and biomedical evidence linking a protein to a disease.
The Open Targets Platform is a public—private partnership that compiles all available evidence
on gene—disease associations and summarizes it in a synthetic score (Buniello et al., 2025). Each
source of evidence is weighted according to a scoring framework, and the resulting values are
harmonized to standardized identifiers for proteins (Gene IDs) and diseases (MeSH terms). These
data are openly available online through the Open Targets Platform (https://platform.opentargets.
org/) and were merged with our dataset. The scores provide the most comprehensive and sys-
tematic measure of the strength of genetic evidence currently available, and they are highly pre-
dictive of future clinical trial success (Razuvayevskaya et al., 2024). We therefore use the Open
Targets score as an evidence-based proxy for the underlying therapeutic potential of each pro-
tein—disease pair.

Figure 4 in the main text illustrates how our setup gives rise to a fitness landscape, shown
there for the case of BACEI and its neighboring proteins in relation to Alzheimer’s disease. Rela-
tive to BACE1, the STRING interaction scores (our measure of distance) for selected neighboring
proteins are as follows: BACE2 = 0.909, NCSTN = 0.878, SORL1 = 0.737, NAV1 = 0.666, and
FYN = 0.438. Each of these proteins also has an Open Targets score that captures its biological
and therapeutic potential for Alzheimer’s disease: BACE1 = 0.35, BACE2 = 0.09, FYN = 0.13,
NCSTN = 0.40, NAV1 = 0.03, and SORLI = 0.00. Although a moderate degree of spatial corre-
lation exists between related proteins, the empirical landscape shown in Panel (b) of Figure 4 is
highly rugged, underscoring the difficulty of search and discovery in pharmaceutical innovation.

FIRM HETEROGENEITY:

We use firm-level publication histories to measure heterogeneity in how organizations general-
ize from failure. The objective is to distinguish firms with direct, target-specific knowledge from
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those that rely more heavily on inference across related targets. We operationalize two dimen-
sions of the knowledge base at the firm—protein level: a target-specific level of experience and a
cross-target concentration of experience. Publication data come from PubTator3, which provides
machine-annotated protein mentions for PubMed records and maps them to Gene IDs and MeSH
terms. We link these records to firms using author affiliation strings from Dimensions metadata
and harmonize organization name variants to their parent entities. Any measurement error in this
linkage would bias the results against finding systematic heterogeneity, making our estimates con-
servative.

More specifically, we capture prior experience for firm f, protein p, and year ¢ by defining the
following indicator:

PriorPuby,, = I{3 a PubTator3 publication by f that studies p with publication year < ¢ — 1}

This equals 1 if f has at least one prior publication on p before year ¢ and 0 otherwise. In split-
sample analyses, “higher experience” firms have PriorPuby ,, = 1 for the protein featured in their
patents; “lower experience” firms have PriorPuby ,, = 0. Figure B4 shows an example from our
data on two patents published on the same date, May 22, 2003. Elan Corporation has a BACE1-
related article published from 2001, so PriorPuby,,, pacgi 2003 = 1. Instead, Vertex Pharmaceu-
ticals’ first BACE1-related publication appeared in 2019, so PriorPubyeyex, Back1, 2003 = 0. Both
firms patented on BACEI in 2003, but they differ in target-specific prior experience according to
our PubTator3-based indicator.

Figure B4: Example of Patenting Firms with Differing Levels of Expertise on BACE].

elan VERTE
HUMAN MOLECULAR GENETICS
BACE knockout mice are healthy despite lacking the
primary B-secretase activity in brain: implications
for Alzheimer’s disease therapeutics ccess >
teven L. Roberds, John Anderson, Gurigbal Basi, Michael J. Bienkowski,
o United States

ranstetter, Karen S. Chen, Stephen Freedman, Normand L. Frigon,
gHu... Sho

Human Molecular Genetics, Volume 10, Issue 12, 1 June 2001, Pages 1317-1324,

o9 United States

t Application Publication
al. «

A
RTEX
!
!

US 2003/0096864 AL Al
May 22, 200 May 22,2003

Note: The figure shows the two patents published the same day, May 22, 2003, both leveraging BACEI as a drug
target for Alzheimer’s. Elan Corporation has prior publications on the protein, while Vertex Pharmaceuticals does
not, thus implying differing levels of experience with the protein. See text for details.

To capture the concentration of firm experience, we follow the approach by Arts et al. (2025)
and build a measure based on firms’ publication portfolios. Let pubs; ,, be the count of PubTator3-
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indexed publications by firm f that mention protein p up to year {. We then define the share:

pubs; .
s = ——— with s =1,

!

g

and the corresponding Herfindahl-Hirschman Index (HHI): HHI;;, = > p (s fg7t)2. A higher
HHI;, indicates a more concentrated portfolio of protein-specific publications for firm f. Ac-
cording to our computational model, narrower portfolios imply a greater potential role for gener-
alization when direct experience is limited. We operationalize this in heterogeneity tests by clas-
sifying firms with above-median HHI;, as having a narrow base of experience, and firms with
below-median values as having a broader one. Results are robust to alternative percentile cutoffs.
As an illustration of these measures, consider two mid-size biotechnology companies, each
with the same number of patent applications in our data. The first is Anadys Pharmaceuticals,
later acquired by Roche for $230 million.!! Anadys was a leader in treatment options for hepatitis
C, with a highly focused portfolio of R&D activities. Its eight peer-reviewed publications refer-
enced only nine proteins, resulting in a high concentration of expertise: HHIpaqys = 0.1426. In
contrast, ACEA Biosciences, a similarly sized firm acquired by Agilent Technologies for $250
million,'? specialized in developing platform tools for cell analysis rather than pursuing specific
therapeutic targets. ACEA’s 18 publications covered 157 proteins, yielding a much lower concen-
tration value: HHIzcga = 0.0103.'3 In our empirical analysis, Anadys is classified as having a
concentrated base of experience, whereas ACEA is classified as having a broad one.

Thttps://www.reuters.com/roche-to-buy-anadys-pharmaceuticals-for-230-million.html

https://www.agilent.com/newsroom/presrel/2018.html

13 A similar measure of breadth of expertise based on patent portfolios yields consistent results: Anadys’ patents
mention 327 proteins, whereas ACEA’s mention 1,755 proteins. These unreported results confirm the robustness of
the publication-based measure.
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C. ADDITIONAL TABLES AND FIGURES

Table C1: Direct Effects of Clinical Trial Failures on Pharmaceutical Firm Patenting by Clinical
Trial Stage.

Firm Patents Targeting a Protein-Disease Pair

(1) (2) (3) 4)
Post x Clinical Trial (Phase II and III) 0.980*** 1.110***
(0.123) (0.000650)
. X Failure -0.459*
(0.164)
Post x Clinical Trial (Only Phase 1I) 1.202*** 1.387***
(0.105) (0.138)
. X Failure -0.646***
(0.188)
Protein-disease FE YES YES YES YES
Protein FE YES YES YES YES
Disease FE YES YES YES YES
Year FE YES YES YES YES
Observations 147,979,011 147,979,011 147,945,970 147,945,970

Note: *, ** *** denote significance at the 5%, 1%, and 0.1% level, respectively. Difference-in-
differences panel regressions at the protein-disease-year level. Std. err. clustered at the protein-disease
level. All models include protein-disease pair, disease, protein, and year fixed effects. The sample

in columns (1) and (2) includes all protein-disease pairs, while columns (3) and (4) exclude protein-
disease pairs that received a Phase III clinical trial. Firm Patents Targeting a Protein-Disease Pair:
yearly count of USPTO patent applications granted to pharmaceutical firms for inventions targeting
a specific protein-disease pair; Post X Clinical Trial (Phase II and II1): 0/1 = 1 in all years after con-
clusion of the first phase 2 or 3 clinical trial targeting a focal protein-disease pair; Post x Clinical
Trial (Only Phase 11): 0/1 = 1 in all years after conclusion of the first phase 2 clinical trial targeting a
focal protein-disease pair; Failure: 0/1 = 1 for clinical trials that are terminated before their natural
completion. See text for details.
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Table C2: Spillover Effects of Clinical Trial Failures on Pharmaceutical Firm Patenting (Alterna-
tive Samples).

Firm Patents Targeting a Protein-Disease Pair

ey 2) 3) 4)

Post x Clinical Trial (Spillover)  0.0269*** 0.0302***  -0.00482***  -0.00220*
(0.000630)  (0.000713)  (0.00105)  (0.00110)

. % Failure -0.0146*** -0.0116***

(0.00147) (0.00147)
Protein-disease FE YES YES YES YES
Protein FE YES YES YES YES
Disease FE YES YES YES YES
Year FE YES YES YES YES

Observations 147,979,011 147,979,011 43,281,430 43,281,430

Note: *, *¥* *** denote significance at the 5%, 1%, and 0.1% level, respectively. Difference-in-
differences panel regressions at the protein-disease-year level. Std. err. clustered at the protein-disease
level. All models include protein-disease pair, disease, protein, and year fixed effects. The sample

in columns (1) and (2) includes all protein-disease pairs that did not receive a clinical trial, while
columns (3) and (4) include only protein-disease pairs genetically related to pairs receiving a clinical
trial. Firm Patents Targeting a Protein-Disease Pair: yearly count of USPTO patent applications
granted to pharmaceutical firms for inventions targeting a specific protein-disease pair; Post x Clinical
Trial (Spillover): 0/1 = 1 in all years after conclusion of the first phase 2 or 3 clinical trial targeting a
genetically related protein-disease pair; Failure: 0/1 = 1 for clinical trials that are terminated before
their natural completion. See text for details.
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Table C3: Spillover Effects of Clinical Trial Failures on Pharmaceutical Firm Patenting (Enroll-
ment Size of Clinical Trial).

Firm Patents Targeting a Protein-Disease Pair

Sample: Low Patient Enrollment High Patient Enrollment

) 2) 3) “)

Post x Clinical Trial (Spillover)  0.0275*** 0.0304*** 0.0325* 0.0362***
(0.000883) (0.00107) (0.000892)  (0.000954)

. X Failure -0.00834*** -0.0353***
(0.00185) (0.00260)
Protein-disease FE YES YES YES YES
Protein FE YES YES YES YES
Disease FE YES YES YES YES
Year FE YES YES YES YES
Observations 126,334,781 126,334,781 126,240,845 126,240,845

Note: *, ** *** denote significance at the 5%, 1%, and 0.1% level, respectively. Difference-in-
differences panel regressions at the protein-disease-year level. Std. err. clustered at the protein-disease
level. All models include protein-disease pair, disease, protein, and year fixed effects. The sample

in columns (1) and (2) includes only clinical trials with a below median number of patients enrolled
(i.e., fewer than 50), while columns (3) and (4) include clinical trials with an above median number of
patients enrolled (i.e., fewer than 50). Firm Patents Targeting a Protein-Disease Pair: yearly count of
USPTO patent applications granted to pharmaceutical firms for inventions targeting a specific protein-
disease pair; Post x Clinical Trial (Spillover): 0/1 = 1 in all years after conclusion of the first phase 2
or 3 clinical trial targeting a genetically related protein-disease pair; Failure: 0/1 = 1 for clinical trials
that are terminated before their natural completion. See text for details.
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Table C4: Spillover Effects of Clinical Trial Failures by Underlying Merit (Split Sample Regres-

sions).
Firm Patents Targeting a Protein-Disease Pair
Sample: High Merit Protein-Disease Pairs Low Merit Protein-Disease Pairs
Protein-Protein Distance: 1 Quartile 2 Quartile 3 Quartile 4 Quartile 1 Quartile 2 Quartile 3 Quartile 4 Quartile
(1 (2) 3 “ (©)) (6) O] ¥
Post x Clinical Trial (Spillover) 0.0180 -0.0240%** -0.0204**  -0.00771 0.00221*%  -0.00257*** -0.00214*** -0.00366%***
(0.0101) (0.00672)  (0.00691) (0.00556) (0.00108) (0.000703)  (0.000609)  (0.000521)
.. x Failure -0.0433***  -0.0208*  -0.00739  -0.0131 -0.00737***  -0.00330**  -0.000822 0.000650
(0.0144) (0.00916)  (0.00964) (0.00852) (0.00199) (0.00100) (0.00103) (0.000769)
Protein-disease FE YES YES YES YES YES YES YES YES
Protein FE YES YES YES YES YES YES YES YES
Disease FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES
Observations 1,714,370 1,265,780 1,077,699 941,659 9,535,511 9,540,299 9,659,334 9,546,778

Note: *, ¥* **% denote significance at the 5%, 1%, and 0.1% level, respectively. Difference-in-
differences panel regressions at the protein-disease-year level corresponding to those reported in
Figure 2. The table reports standardized beta coefficients to enable comparison across split samples.
Std. err. clustered at the protein-disease level. All models include protein-disease pair, disease, pro-
tein, and year fixed effects. Columns (1)-(4) include protein-disease pairs with a positive Open Target
Score, while columns (5)-(8) include protein-disease pairs with an Open Target Score equal to zero.
Firm Patents Targeting a Protein-Disease Pair: yearly count of USPTO patent applications granted
to pharmaceutical firms for inventions targeting a specific protein-disease pair; Post x Clinical Trial
(Spillover): 0/1 =1 in all years after conclusion of the first phase 2 or 3 clinical trial targeting a genet-
ically related protein-disease pair; Failure: 0/1 = 1 for clinical trials that are terminated before their

natural completion. See text for details.
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Table C5: Spillover Effects of Clinical Trial Failures by Level of Firm Experience (Split Sample

Regressions).
Firm Patents Targeting a Protein-Disease Pair
Sample: Firms with High Level of Experience Firms with Low Level of Experience
Protein-Protein Distance: 1 Quartile 2 Quartile 3 Quartile 4 Quartile 1 Quartile 2 Quartile 3 Quartile 4 Quartile
() (@) 3 “ (5 (6) (©) ®)
Post x Clinical Trial (Spillover) 0.00557** -0.00300** -0.00200* -0.00168** 0.00684*** -0.00610%** -0.00543*** -0.00510%**
(0.00203)  (0.00107)  (0.000985) (0.000634) (0.00192) (0.00117) (0.00103) (0.000949)
.. X Failure -0.00540  -0.000393  0.000684  0.000527 -0.0211%%*%  -0.0115%**  -0.00535%**  -0.00255*
(0.00314)  (0.00134)  (0.00143)  (0.000942) (0.00230) (0.00146) (0.00128) (0.00120)
Protein-disease FE YES YES YES YES YES YES YES YES
Protein FE YES YES YES YES YES YES YES YES
Disease FE YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES
Observations 11,249,881 10,806,079 10,737,033 10,488,437 11,249,881 10,806,079 10,737,033 10,488,437

Note: *, ** *** denote significance at the 5%, 1%, and 0.1% level, respectively. Difference-in-

differences panel regressions at the protein-disease-year level corresponding to those reported in
Figure 2. The table reports standardized beta coefficients to enable comparison across split samples.
Std. err. clustered at the protein-disease level. All models include protein-disease pair, disease, pro-

tein, and year fixed effects. Columns (1)-(4) include patent applications firms with a high level of
experience, while columns (5)-(8) include patent applications firms with a low level of experience.

Firm Patents Targeting a Protein-Disease Pair: yearly count of USPTO patent applications granted
to pharmaceutical firms for inventions targeting a specific protein-disease pair; Post x Clinical Trial
(Spillover): 0/1 = 1 in all years after conclusion of the first phase 2 or 3 clinical trial targeting a genet-
ically related protein-disease pair; Failure: 0/1 = 1 for clinical trials that are terminated before their
natural completion. See text for details.
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Table C6: Spillover Effects of Clinical Trial Failures by Concentration of Firm Experience (Split

Sample Regressions).

Sample:

Protein-Protein Distance:

Firm Patents Targeting a Protein-Disease Pair

Firms with Low Concentration of Experience

Firms with High Concentration of Experience

.. x Failure

Protein-disease FE
Protein FE
Disease FE

Year FE
Observations

1 Quartile 2 Quartile 3 Quartile 4 Quartile
(1 2 3) 4)
Post x Clinical Trial (Spillover) 0.01014*** -0.00371%*** -0.00324%*** -0.00357%***
(0.00199) (0.00110) (0.000992)  (0.000767)
-0.0123%**  -0.00473***  -0.00138 -0.000333
(0.00282) (0.00139) (0.00137) (0.00106)
YES YES YES YES
YES YES YES YES
YES YES YES YES
YES YES YES YES
11,249,881 10,806,079 10,737,033 10,488,437

1 Quartile 2 Quartile 3 Quartile 4 Quartile
%) (6) N ®)
0.00452%** -0.00867*** -0.00626%**  -0.00363%**
(0.00162) (0.00108) (0.000853)  (0.000706)
-0.0191%**  -0.0106%**  -0.00550%*** -0.00319%:*
(0.00189) (0.00116) (0.00102) (0.000869)
YES YES YES YES
YES YES YES YES
YES YES YES YES
YES YES YES YES
11,249,881 10,806,079 10,737,033 10,488,437

Note: *, ** **%* denote significance at the 5%, 1%, and 0.1% level, respectively. Difference-in-
differences panel regressions at the protein-disease-year level corresponding to those reported in
Figure 2. The table reports standardized beta coefficients to enable comparison across split samples.
Std. err. clustered at the protein-disease level. All models include protein-disease pair, disease, pro-
tein, and year fixed effects. Columns (1)-(4) include patent applications firms with a low concentration
of publication experience, while columns (5)-(8) include patent applications firms with a high con-
centration of publication experience. Firm Patents Targeting a Protein-Disease Pair: yearly count of
USPTO patent applications granted to pharmaceutical firms for inventions targeting a specific protein-
disease pair; Post x Clinical Trial (Spillover): 0/1 = 1 in all years after conclusion of the first phase 2
or 3 clinical trial targeting a genetically related protein-disease pair; Failure: 0/1 = 1 for clinical trials
that are terminated before their natural completion. See text for details.
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Figure C1: Direct and Spillover Effects from Clinical Trial Failures (Robustness to Alternative
Fixed Effect Structures).

(a) Direct Effects of Clinical Trial Failures.
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(b) Spillover Effects of Clinical Trial Failures.
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Note: The figure presents the robustness of our main results reported in Table 2 to alternative structures of fixed
effects. Each coefficient presents the OLS estimate of the interaction term with increasingly stringent specifications
of gene, disease, and gene-disease pair fixed effects. Panel (a) shows the decrease in patenting for protein-disease
pairs subject to failed clinical trials, depending on the fixed effect structure. The coefficients are estimated using vari-
ations of Equation 4, with the last coefficient corresponding to Column (2) of Table 2. Panel (b) shows the decrease
in patenting for protein-disease pairs biologically related to the genetic targets of failed clinical trials, depending

on the fixed effect structure. The coefficients are estimated using variations of Equation 5, with the last coefficient
corresponding to Column (4) of Table 2. See text for details.
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