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Abstract

Big data are increasingly used to make predictions about uncertain investments, thereby helping
firms identify innovation opportunities without the need for domain knowledge. This trend has
led to questions about which firms will primarily benefit from the availability of these data-driven
predictions. Contrary to existing research suggesting that data-driven predictions level the playing
field for firms lacking domain knowledge, I argue—using a simple theoretical framework—that
these predictions actually reinforce the competitive advantage of firms with domain knowledge. In
innovation contexts, where returns are skewed and not all leads can be pursued, domain knowledge
helps evaluate predictions and avoid false positives. I test this idea in the context of pharmaceuti-
cal innovation, exploiting the features of genome-wide association studies (GWASs) that provide
data-driven predictions about new drug targets. The results show that GWASs stimulate corporate
investments, but around one-third of these resources are misallocated toward false positive predic-
tions. Companies lacking domain knowledge react more strongly but are disproportionally likely to
fall into the trap of false positives. Instead, domain knowledge helps firms make fewer investments
that target only the best opportunities. Together, the results show that even if data-driven predic-
tions hold value when searching for innovations, domain knowledge remains the crucial source of
competitive advantage in the age of big data.
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“Petabytes allow us to say: ‘Correlation is enough’ ”
Chris Anderson (2008)

1 Introduction
The data revolution is transforming how companies operate (Adner et al., 2019), with firms increasingly
using machine learning and artificial intelligence (AI) to analyze large amounts of data and make
predictions about future events or uncertain choices (Agrawal et al., 2018; Brynjolfsson et al., 2021;
Cockburn et al., 2019; Sun et al., 2021). In addition to being used to inform operational decisions,
data-driven approaches are becoming common when making strategic decisions in high-risk contexts
such as innovation or entrepreneurship. For instance, venture capitalists use predictive algorithms
to identify successful start-ups (Bhatia and Dushnitsky, 2023), consumer goods corporations rely on
social media data to forecast the revenues of prospective products (Allen and McDonald, 2022), and
pharmaceutical firms try to predict the therapeutic properties of millions of potential drugs (Heaven,
2023; Lou and Wu, 2021). In both traditional and high-tech sectors, data-driven predictions are
reshaping how firms find innovation opportunities.

Given the prevalence of this phenomenon, a central question is how predictive technologies affect
market competition (Iansiti and Lakhani, 2020). Traditionally, scholars have argued that domain
knowledge allows firms to foresee the value of alternative choices, thus enhancing performance by
recognizing opportunities (Cohen and Levinthal, 1990; Gruber et al., 2008; Taylor and Greve, 2006).
However, data-driven predictions can serve the same role without needing domain knowledge (Agrawal
et al., 2023; Balasubramanian et al., 2022). Since obtaining predictions is now cheaper and faster
than accumulating expertise, performance gains are likely to favor those lacking domain knowledge.
Recent research in contexts like writing or gaming supports this idea: predictive technologies help
mostly novices, hence substituting for their lack of knowledge (Choi et al., 2022; Noy and Zhang,
2023). Despite still lacking direct evidence, one would expect a similar democratization effect when
extrapolating this logic to firm innovation. Data-driven predictions might erode the role of domain
knowledge as a source of competitive advantage, leveling the playing field through what some have
hailed as the “death of theory” (Anderson, 2008).

Even though these arguments suggest that domain knowledge might no longer be necessary in
the age of big data, there are several reasons to think otherwise. The limited existing evidence shows
that data-driven predictions can, on average, yield significant performance gains (Nagaraj, 2022; Kao,
2023), but the skewed distribution of innovation returns means that most predictions are worthless.
Said otherwise, even data-driven predictions that are valuable on average can mask several false positive
findings (Berman and Van den Bulte, 2022). When validating predictions is relatively inexpensive,
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such as in operational decisions, firms can afford a “spray and pray” approach to experimentally learn
which ones unlock performance improvements. However, this logic might not extend to innovative
contexts, where testing a prediction is costly and dynamically forecloses other paths (Gans et al.,
2019; Levinthal, 2021). Financial and organizational constraints mean that the firm cannot follow
every prediction, and betting on the wrong ones can dramatically hurt performance (Eggers, 2012).
These features of the innovation process imply that achieving gains from predictive technologies poses
unique challenges.

Motivated by this logic, in this paper I argue that domain knowledge is a crucial complement
to data-driven predictions in the context of innovation. While it is true that predictions can identify
opportunities without requiring comprehension, domain knowledge becomes essential in evaluating
their plausibility to rule out false positives (Allen and Choudhury, 2022; Arora and Gambardella,
1994). This suggests a two-stage process, where predictive algorithms generate a shortlist of potential
opportunities, while domain knowledge is used to rank them and funnel resources to the most promis-
ing ones. To formalize this concept, I introduce a simple theoretical framework showing how the same
data-driven predictions can have heterogeneous effects among firms facing equal investment costs. My
framework yields a few testable implications. Data-driven predictions will increase aggregate invest-
ments, mostly by firms without domain knowledge; however, such firms will be less likely to uncover
actual opportunities in the data despite pursuing a larger number of predictions. Acknowledging the
consequences of false positives suggests the opposite of existing research: data-driven predictions in
innovation might reinforce the advantage of incumbents with the domain knowledge to evaluate them
rather than helping novices catch up.

The validity of my theoretical framework is ultimately an empirical question. However, empir-
ically assessing how data-driven predictions and domain knowledge interact in shaping innovation
performance presents several issues. First, it requires the ability to observe the risk set of potential
opportunities that firms could pursue, usually coupled with the impossibility of learning the actual
value of counterfactual investments that were not chosen. Second, there also needs to be a way to know
which specific data predictions were available and how they aligned with any given firm’s knowledge.
The last challenge presents a crucial identification issue: if the quality of data-driven predictions
correlates with firms’ domain knowledge, then it becomes impossible to distinguish the prediction’s
quality from the ability to correctly interpret it.

I address these challenges by focusing on the setting of pharmaceutical innovation, a field with
empirical features ideally suited for this paper. The drug development process is a lengthy and costly
endeavor, starting with the difficult identification of genes that can act as drug targets. The recent
emergence of genomics has enabled a new approach to locate the genetic roots of human diseases,
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called genome-wide association studies (GWASs). GWASs are studies that compare the genomes of
individuals with and without a specific disease to identify genetic mutations that correlate with the
presence of a disease. In practice, they yield predictions on the value of genes as drug targets, bypassing
the need to grasp the gene’s role in the disease. This allows an exploration of how pharmaceutical
firms react to the arrival of data-driven predictions that inform their selection of genetic targets for
diseases. I use patent applications as an indicator of early stage investments and the discovery of new
drugs to trace downstream outcomes following a GWAS.

To identify the causal role of data-driven predictions, I exploit three unique features of GWASs.
First, these studies scan the entire genome and do not target specific genes ex-ante, ensuring that
any correlation between genes and the disease of interest is not the result of endogenous selection
by the researcher (Uffelmann et al., 2021). Second, GWASs are primarily conducted by academic
researchers, who make their findings publicly available to every firm. New gene-disease associations
are usually unexpected by researchers and even more so by firms, who learn about them when they
are published in scientific journals. Third, GWASs uncover both breakthrough opportunities and false
positive genetic targets. To separate them, I exploit the fact that diseases are often subject to multiple
GWASs of increasing statistical power over time (Marigorta et al., 2018). Subsequent GWASs provide
an intuitive way to identify findings that are not robust to replications, revealing that they were likely
false positives.

This setting allows me to test how firms leverage data-driven predictions. However, on average, the
GWAS papers in my data present 14 new gene-disease associations, of which 12 are false positives. This
presents a challenge as conventional measurements, such as patent-to-paper citations, do not permit
linking investments to individual predictions within the same GWAS. To overcome this challenge, I
adopt a novel text-based approach to extract the specific associations targeted in each patent and map
them onto an empirical landscape of all possible gene-disease combinations. This approach enables
me to track firms’ investments over the search landscape before and after the arrival of data-driven
GWAS findings while bypassing the use of patent citations. I then use firms’ publications to measure
the genes researched before GWASs’ arrival. As confirmed in my interviews, firms with an active
research program on a gene can leverage this knowledge to assess GWAS findings even if the genetic
expertise was developed for another disease (Cattani, 2005). This allows me to study the impact of
data-driven predictions separately for firms with and without domain knowledge to evaluate them.

I find that the average number of patent applications on a gene-disease combination more than
doubles after it is reported by a GWAS. Event study specifications confirm the absence of pre-trends
and the validity of the research design. However, I also find that over a third of patent applications
are directed to pursuing false positive findings. Investments made based on these false positives fail
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to yield downstream outcomes such as highly cited patents or new drug molecules, suggesting that
misallocating resources can hurt firm performance. Next, I explore the interaction between firms’
domain knowledge and the availability of data-driven predictions. The results indicate that firms
lacking domain knowledge react more strongly after a GWAS is published. However, they are dispro-
portionally likely to select false positive findings. In contrast, firms with domain knowledge exhibit
a more discerning approach, making fewer investments that target the most promising opportunities,
simultaneously reducing commission (type I) and omission (type II) errors.

I further investigate these findings with a firm-level research design. Even after controlling
for firm and firm-by-disease fixed effects, the analyses confirm that genetic knowledge makes firms
more efficient and targeted in their investments. To explore the mechanisms underlying my results,
I categorize the specific nature of firms’ domain knowledge (Zollo and Winter, 2002). Regression
analyses show that the ability to avoid false positives does not reflect the sheer amount of past
investments or publications; instead, it seems to be the purview of firms that can translate basic
scientific principles to the evaluation of GWAS associations. Additional results rule out social
connections with scientists, generic organizational capabilities, or different firm-level strategies as
alternative mechanisms. Taken together, these findings provide intriguing evidence that the ability to
assess data-driven predictions stems from understanding the mechanisms of what makes an opportunity
valuable (Camuffo et al., 2023b).

This paper makes several contributions. First, it contributes to a developing research agenda on
how data-driven innovation through tools like AI will shape innovation (Agrawal et al., 2023; Allen and
McDonald, 2022; Bessen et al., 2022; Cockburn et al., 2019; Jin and McElheran, 2019) and its limits
(Cao et al., 2023; Hoelzemann et al., 2023; Tranchero, 2023; Wu et al., 2020). By shedding light on the
implications of false positive predictions, my results show the importance of going beyond the average
effects of predictive technologies by directly considering firm-level heterogeneity. In particular, my
novel framework highlights the possession of domain knowledge as a critical determinant of who
benefits from data-driven predictions in innovation. Relative to research showing a democratizing
effect of data availability (Nagaraj, 2022), accounting for false positives implies a complementarity
with domain knowledge that reinforces incumbents’ advantage (Kao, 2023). Greater attention to the
mechanisms and boundary conditions of data-driven innovation may provide insights into why the
promise of big data seems slow to materialize in the context of innovation (Brynjolfsson et al., 2021;
Lou and Wu, 2021).

Moreover, the paper contributes to the literature on firm capabilities (Cattani, 2005; Dosi et al.,
2001; Teece, 2007) and their interaction with predictive technologies (Balasubramanian et al., 2022).
Using a new empirical approach to map firms’ investments onto an empirical search landscape, I show
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the continuing importance of absorptive capacity, intended as the use of domain knowledge to both
recognize and exploit opportunities (Cohen and Levinthal, 1990). However, while the literature has
often focused on the latter aspect, this paper suggests that assessing predictions and understanding
which ones to trust poses a crucial challenge for firms (Bikard, 2018; Eggers and Kaplan, 2009; Kaplan
et al., 2003). The paper also adds to the theory-based view in management (Camuffo et al., 2023b;
Wuebker et al., 2023) by showing the changing role of domain knowledge: no longer originating ideas
but instead separating the wheat from the chaff among the data. Last, the paper builds on research about
the use of predictive tools in hiring, marketing, and other firm operations (Cowgill, 2018; Hoffman
et al., 2018; Kim, 2023a). I show how this work can extend to innovation, where tool-specific skills
(Yue et al., 2023) are likely insufficient to improve performance since domain knowledge is pivotal to
interpreting data-driven predictions.

The paper proceeds as follows. Section 2 presents the theoretical framework. Section 3 presents
the drug discovery setting, the measurement strategy, and the data. Section 4 discusses the research
design. Section 5 reports the results, while Section 6 discusses mechanisms at the firm level. Section
7 concludes.

2 Theoretical Framework
Survey evidence shows that the majority of U.S. firms use predictive tools, even in traditional sectors
like manufacturing (Brynjolfsson et al., 2021). Yet, little is known about their impact on innovation,
which entails searching for opportunities in complex technological spaces. This section addresses
this gap by theorizing the mechanisms through which data-driven predictions change innovation and
which firms benefit from them.

2.1 Using Data-Driven Predictions to Find Innovation Opportunities
A firm’s ability to select the best opportunities is a critical determinant of its competitive advantage
(Teece, 2007). Firms devote substantial effort in evaluating potential investments to allocate their
limited resources (Criscuolo et al., 2017; Krieger and Nanda, 2022). This is especially true in inno-
vation, where technological landscapes are too vast to experiment with all the potential combinations
(Fleming, 2001). Traditionally, firms have navigated this complexity through two main strategies:
accumulating domain knowledge (Arora and Gambardella, 1994; Cohen and Levinthal, 1990; Gruber
et al., 2008) or sourcing ideas externally (Fabrizio, 2009; Luo et al., 2021; Piezunka and Dahlander,
2015). For example, discovering a new drug requires searching in a chemical space of ∼ 1060

molecules. Given this enormity, it is impossible to test all of them. Therefore, pharmaceutical firms
have historically focused on internal research and academic collaborations to funnel their resources
toward the most promising leads (Cockburn and Henderson, 1998).
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However, the recent availability of big data and predictive technologies1 has significantly altered
this status quo. Firms can now use data-driven predictions to assess the value of uncertain alternatives
(Agrawal et al., 2023; Lou and Wu, 2021). Data on past successful combinations can be analyzed to
find patterns that help assess the viability of potential investments (Kim, 2023b), thus triaging them
before committing any actual resource (Kao, 2023; Nagaraj, 2022). Consider again the setting of
drug discovery. A few ago, Stokes et al. (2020) used data on past antibiotics to score the therapeutic
potential of new molecules from their shape, predicting those with the highest antibacterial properties.
This process yielded a new drug without needing knowledge of chemistry, bacteriology, or biology.

The power of data-driven predictions lies in their ability to facilitate a large-scale inductive
method for technological search (Strasser, 2019). Algorithms help identify association patterns
between variables that elude even the most careful observation, making the search process effectively
“automated” (Mullainathan and Rambachan, 2023). The advantage is that data-driven predictions
is not confined to technological components of known function or to relationships with established
theories (Tranchero, 2023). Instead, they offer a theory-free approach to prioritizing search, offering
guidance even if the underlying mechanisms for success are unknown to the innovator. Returning to
the case of antibiotics discovery, no generalized theory exists of how molecule structures map into
antibacterial effects. The algorithm developed by Stokes et al. (2020) sidestepped this issue because
it recognized patterns pointing at short-changed molecules whose effects on pathogens were thus far
unknown.

Predictive technologies are fundamentally reshaping the type of knowledge that organizations use
to identify opportunities, with data-driven predictions becoming the basis for innovation decisions
instead of domain expertise. This shift may deter firms from investing in domain knowledge since
data-driven predictions could be a cheaper and more fungible substitute (Balasubramanian et al., 2022;
Puranam, 2019). The consequence could be what the popular press has called the death of theory
(Anderson, 2008; Schmidt, 2023; Zittrain, 2019), potentially eroding the role of domain knowledge
as a source of superior performance in innovation. This change has important implications for
strategy and competitive dynamics (Adner et al., 2019; Iansiti and Lakhani, 2020). For example, data-
driven predictions may democratize competition by helping new entrants disrupt incumbents that have
traditionally relied on large knowledge bases to keep them at bay. In summary, the rise of predictive
technologies raises the question of whether domain knowledge remains relevant in innovation and who
will benefit from these trends.
1I define predictive technologies as algorithms designed to use large amounts of data to make predictive statements about
future or unknown events (Brynjolfsson et al., 2021). This includes tools of varying levels of sophistication, from simple
correlations to deep learning and AI (Kim, 2023b). However, data-driven predictions are conceptually different from
descriptive uses of data analytics (Berman and Israeli, 2022).
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2.2 Do Data-Driven Predictions Substitute Domain Knowledge?

Recent literature has started exploring the performance implications of adopting predictive algorithms.
While still nascent, this work consistently finds that the most sizable performance improvements from
predictive algorithms are seen among novices across a variety of tasks, from customer support to
creative writing (Brynjolfsson et al., 2023; Choi et al., 2022; Doshi and Hauser, 2023; Gaessler and
Piezunka, 2023). It also suggests that predictive algorithms can level the playing field for those lacking
domain knowledge (Noy and Zhang, 2023).2 However, these studies focus on tasks where data-driven
predictions can be quite accurate, such as moves in board games or resume screening (Cowgill, 2018;
Hoffman et al., 2018). More work is needed to explore if the same results apply in innovation, where
the precision of predictive tools is likely lower due to the complexity of the prediction task (Tranchero,
2023) and the incomplete training data (Choudhury et al., 2020; Kim, 2023b).

A parallel strand of work examines the impact of data-driven predictions on innovation (Agrawal
et al., 2023; Allen and McDonald, 2022; Cockburn et al., 2019). However, these studies seldom address
the interaction between such predictions and domain knowledge, leaving unanswered questions. The
findings are mixed: some studies show that predictive technologies increase incremental innovation
(Wu et al., 2020), while others suggest that they lead to more breakthroughs (Tranchero, 2023). It
is thus unclear if domain knowledge is essential to identifying valuable opportunities. Similarly, the
types of firms that stand to benefit from data-driven predictions are ambiguous. Some research has
found that new entrants can use data to recognize opportunities ahead of experienced firms (Jin and
McElheran, 2019; Nagaraj, 2022), while others have reached the opposite conclusion (Kao, 2023).
These conflicting results are puzzling if one thinks of data as reducing the cost of locating opportunities,
which would imply that they substitute domain knowledge and benefit firms lacking expertise.

It is equally difficult to form expectations from the extensive literature investigating the role of
domain knowledge in innovation (Cattani, 2005; Cohen and Levinthal, 1990; Volberda et al., 2010).
This work finds that domain knowledge is associated with the ability to recognize opportunities
(Arora and Gambardella, 1994; Kaplan and Vakili, 2015) but also that it limits search and leads to
competency traps (Levinthal and March, 1993). A potential implication is that data-driven predictions
might counteract organizational inertia and find breakthroughs outside domains mastered by the
firm. However, because these predictions are atheoretical, experts may be skeptical (Boudreau et al.,
2016), and research shows that actors with more domain experience are less willing to follow the
guidance of predictive tools (Allen and Choudhury, 2022; Glaeser et al., 2022). Additional research
in organizational contexts should explore if domain knowledge offsets the novelty introduced by data-

2A notable exception is the recent work by Jia et al. (2023), who show that if predictive tools only substitute mundane
tasks, then experts will benefit by having more time to focus on problem-solving tasks.
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driven technologies or if the two can work together as complements. From the existing evidence and
frameworks, it is not easy to conclude what the role of domain knowledge will be as big data and
predictive tools diffuse among firms.

2.3 Data-Driven Predictions and Domain Knowledge: A Simple Conceptual
Framework

The difficulty in reconciling existing results points to the need for a new conceptual framework to
understand the relationship between data-driven predictions and domain knowledge. Most of the
existing literature neglects that innovation, unlike other prediction tasks, has specific features. First,
false positives are frequent in technological search (Berman and Van den Bulte, 2022). Components
interact in complex ways, meaning that associations between variables are often spurious (Ghosh,
2021; Tranchero, 2023). Second, validating a lead is much more costly than generating it and induces
commitment that can foreclose other paths (Gans et al., 2019). Technological commitments are often
irreversible (Levinthal, 2021), and the consequences of investing in suboptimal projects can be severe
(Eggers, 2012). Last, the returns from innovation are extremely skewed. These three features imply
that firms cannot afford to invest in every data-driven prediction: when technologies require sizable
investments and take years to mature, such as deep tech or drug discovery, the price of a mistake far
outweighs its learning spillovers (Greve, 2003).

This discussion implies that even if data-driven predictions are, on average, valuable, their gains
are concentrated on a few high-value leads hidden between many false positives. The challenge for
firms is thus assessing the plausibility of data-driven predictions and deciding which ones to follow.
This suggests that domain knowledge could become a complement in choosing between potential
opportunities in the data. In other words, the role of knowledge shifts from idea generation to filtering
out false positive leads. One way to visualize this argument is as a two-stage process. First, data-driven
predictions provide a shortlist of technological combinations that are valuable on average but are too
many to test individually. Then, domain knowledge helps by ranking the perceived value of potential
opportunities, thus channeling resources to the most promising predictions.3 This implies that firms
with robust knowledge bases may continue to outperform in innovation, even if that knowledge was
initially developed for other purposes (Cattani, 2005; Cohen and Levinthal, 1994).

In analytical terms, assume that risk-neutral firms search in a landscape ofm potential technological
combinations. Investing in any of them has a constant cost of C for every firm. Combinations can
be of high or low value, but their average value is negative (E(V ) < C), reflecting the skewness in
innovation returns. Then, one can envision data-driven predictions as providing a shortlist of n < m

3For instance, domain knowledge might help firms understand the interdependencies between components, allowing them
to rule out implausible associations in the data (Fleming and Sorenson, 2004).

8



combinations. Since the predictions are informative on average, firms know that the predicted value
of these shortlisted combinations is higher than the cost (E(V̂n) > C). However, each prediction V̂

is a potentially noisy representation of the true value V . Firms will try to rank the predictions to
start investing in the most promising ones and avoid false positives (Aguiar and Waldfogel, 2018).
I propose that domain knowledge can be operationalized as giving firms a better assessment of the
true value of the combination, conditional on observing the same prediction. This means that firms
with domain knowledge will have a subjective ranking of data-driven predictions that is closer to the
true underlying value of those combinations (i.e., closer to V1 > V2 > ... > Vi > ... > Vn).4 Now
assume that firms choose sequentially and they experimentally learn the true value of a combination
only after the investment. To maximize returns, they will start from the combination that they ranked
highest, gradually going down their ranking until the prediction V̂i such that the expected value of the
remaining data-driven predictions is below the investment cost (E(V̂n−i) < C).

This simple framework yields three testable implications. First, the data-driven predictions point,
on average, to valuable opportunities and will lead all firms to increase their investments. Second, the
noisier the ranking of a given firm, the higher the expected value of the residual n − i data-driven
predictions after the first i investments, since earlier investments will miss some high-value ones. This
means that firms with less precise rankings will continue investing sequentially until the prediction
j > i such that E(V̂n−i−j) < C. Since firms lacking domain knowledge have a noisier ranking,
one expects that they will end up pursuing a higher number of predictions. Third, those firms will
make both more commission (or type I) and more omission (or type II) errors, being more likely to
select low-value combinations that they mistakenly ranked high at the expense of true opportunities.
Compared to firms with domain knowledge, those lacking it should be less likely to find the best
opportunities among data-driven predictions despite investing quantitatively more.

Overall, this simple framework offers insights into how domain knowledge interacts with data-
driven predictions and what we should expect to observe if the proposed mechanism holds (see also
Appendix A for a numerical example). To examine whether these implications are supported by the
data, the rest of the paper tests them in the context of pharmaceutical innovation. In particular, I
investigate which firms can benefit from data-driven predictions that identify potential genetic targets
for drug discovery.

4In other words, it is as if firm k observes a noisy firm-specific data-driven prediction: V̂k = V +γ+ϵk, where γ ∼ N(0, η2)
is the noise in the prediction itself, ϵk ∼ N(0, σ2

k) is the noise in the firms’ own assessment of the prediction, and γ
reflects the precision of the prediction itself. Instead, the variance of the firm-specific error (σ2

k) captures firm k’s domain
knowledge, thus being smaller for more knowledgeable firms. Firm k will determine a subjective ranking of every
combination i that received a data-driven prediction, ordering its V̂i,k from largest to smallest. The smaller the error σ2

k,
the closer k’s ranking is to the correct ranking based on the true underlying value of the combinations (Appendix A).
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3 Empirical Setting, Measurement Strategy, and Data
3.1 Drug Discovery and GWASs

Developing a new drug is a risky process that takes, on average, 10-15 years and costs $2.6 billion
(Kao, 2023). Choosing the right genetic target is the first crucial step: namely, firms must identify
genes that can be modulated to affect the outcomes of specific diseases (Nelson et al., 2015).5 This
task is complex because, in principle, each genetic disease could be caused by mutations in any of
the over 19,000 protein-coding human genes. Common diseases are often polygenic—for instance,
diabetes has been tied to over 150 DNA mutations. The result is a vast combinatorial space of tens
of millions of potential gene-disease combinations, of which only a minor fraction has therapeutic
value. Given the inherent complexity and risks associated with identifying the rare gene-disease pairs
that can lead to a drug (Tranchero, 2023), it is unsurprising that pharmaceutical firms often rely on
university research to reduce the risks involved in target selection (Fleming and Sorenson, 2004).

Starting from the early 2000s, the completion of the Human Genome Project and the steep decrease
in the cost of collecting genetic data prompted the emergence of GWASs. GWASs are case-control
studies where researchers sequence human genomes to find genetic mutations that are more likely
to appear among subjects with a specific condition compared to healthy subjects (Uffelmann et al.,
2021; Visscher et al., 2017). Figure 1 shows the abstract of one early GWAS and a stylized depiction
of how a typical study unfolds. Researchers start by collecting DNA samples from several people,
some healthy and some affected by the disease of interest. They then use microarrays to sequence
DNA locations called “markers” to reconstruct the genetic constitution (or genotype) of the people in
the sample. Last, they test for statistically significant differences in genotypes that correlate with the
presence of the disease.6 Intuitively, by comparing the genetic makeup of people with and without a
condition, one can predict which genes might be involved in a given disease and thus serve as drug
targets (see Appendix B for more details).

GWASs provide data-driven leads into gene-disease combinations that can be valuable in research
and development (R&D), and anecdotal evidence points to several drugs developed thanks to GWAS
findings (Visscher et al., 2017). Nevertheless, there is still no consensus on the ability of GWASs
to identify targets with high therapeutic potential (Struck et al., 2018; Tam et al., 2019; Uffelmann

5Genes are sequences of DNA bases that encode the “instructions” to synthesize gene products (e.g., proteins) that allow
the organism to function. When genes acquire mutations in their sequence, they might alter their behavior with significant
consequences for health. Knowing the genetic roots of diseases is vital in designing pharmaceutical drugs because genes
that cause a disease could be targeted for therapeutic purposes (see Appendix B for more details).

6Association tests are adjusted for multiple hypothesis testing, usually imposing a very high threshold for statistical
significance. The results are often graphically represented as a “Manhattan plot” and show the p-value of multiple
statistical tests between DNAs in the case and control groups. The y-axis usually reports -log10(p-value), and hence
higher values correspond to stronger associations.
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et al., 2021). One major limitation is that GWASs cannot explain the underlying mechanisms of
gene-disease associations, raising the possibility of false positives with no actionable causal pathway
(Goldstein, 2009; Hermosilla and Lemus, 2019). The average GWAS can find tens of potentially
promising gene-disease associations, many of which could be worthless or spurious. This creates a
challenge for scientists and firms interested in therapeutic applications due to the high costs involved in
following a data-driven lead.7 As a result, questions remain regarding how many GWAS associations
are valuable and whether they generate useful knowledge for drug discovery at all (Goldstein, 2009).

3.2 Measuring the Impact of GWASs with Text-Based Empirical Landscapes

For my empirical analysis, I need a precise method to measure which firms invest in the gene-disease
associations uncovered by GWASs. Traditional approaches, which rely on patent-to-paper citations,
are not well-suited for this context. On the one hand, a typical GWAS identifies multiple genes
linked to a disease, but it is unclear which are true positives among the false positives. Thus, it is
impossible to determine from a patent citation to the GWAS paper exactly which association the patent
is leveraging. On the other hand, using direct citations is ineffective for tracing the unpredictable path
between foundational basic research and innovation. For instance, patents might cite later research
that validates a particular GWAS association but neglect to mention the original GWAS because such
discovery has become common knowledge in the field.

To address these challenges, I develop a novel measurement strategy (see Appendix C for details
and examples). Taking a recombinant view of innovation (Fleming, 2001), each GWAS association
can be considered as a prediction of a valuable gene-disease combination. This suggests that the
innovation impact of a GWAS is proxied by the change in firm patenting experienced by the gene-
disease pairs “treated” compared to otherwise similar combinations not reported by the GWAS. Next,
named entity recognition algorithms can be used to extract the genes and diseases from the text of each
patent application, providing a way to infer which gene-disease combinations a firm invests in. Figure
2 offers an intuitive representation of how the increase in patents targeting specific gene-disease pairs
captures the heterogeneous impact of individual GWAS associations. Assuming a standard parallel
trends assumption, the before-and-after changes in the number of patents mentioning treated and
control combinations provide an estimate of the GWAS’s effect.8 Notably, this approach permits the
empirical study of firms’ exploration decisions in a combinatorial landscape of genes and diseases.

7This theme emerged prominently in my interviews with industry professionals: “I don’t think anyone who is doing good
science would just trust a GWAS, even an accurate GWAS, because R&D is so expensive” (Interview, 17 October 2022).

8Nagaraj (2022) uses a similar idea to assess the impact of satellite images on gold discovery at the level of individual
blocks of the earth. Kao (2023) adopts the same logic to study the effect of large-scale cancer maps on the number of
clinical trials on 627 genes. The approach detailed in Appendix C formalizes their intuition and expands it to additional
use cases, including quantifying science-to-technology spillovers without the limitations of citation data.
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This approach offers two major advantages over traditional citation-based methods. First, employ-
ing text-based knowledge entities allows for distinguishing the impact of different contributions made
in the same paper. This affords granularity at the gene-disease level that traditional citations lack.
Second, by tracking the mention of genes and diseases directly in the patent’s text description, the
approach is well suited to objectively capturing the impact of basic research findings that might not
be explicitly acknowledged in downstream patent applications. Additionally, it must be noted that this
measurement approach is much more general than the present setting (Ding et al., 2013). Appendix C
presents conceptual details of how this measurement strategy can be generalized to other applications
where document texts capture knowledge spillovers, bypassing the flaws of patent citations.

3.3 Data Sources
To empirically test how firms respond to the arrival of data-driven predictions, three key ingredients
are required. First, I need data on new gene-disease associations identified by GWASs. Second, I
need information on firms’ domain knowledge, investment decisions, and drug development outcomes.
Third, it is essential to know the specific genes and diseases targeted by each GWAS, patent, and drug
in order to link them. Below I summarize the main data (see Appendix D and E for details):

GWAS Catalog: To identify the data-driven predictions available to firms, I rely on the GWAS
Catalog, a manually curated source managed by the European Bioinformatics Institute (EBI). The
GWAS Catalog is a comprehensive list of GWASs published in peer-reviewed journals.9 Studies are
eligible for being included in the GWAS Catalog if they include an array-based genome-wide scan that
does not target any specific gene ex-ante. The GWAS Catalog also collects the details of the findings
as appearing in the original study. My sample includes 17,965 gene-disease associations first reported
by 1,259 distinct GWASs between 2005 and 2019 (Appendix Figure E.1). These associations include
404 unique diseases10 and 5,080 protein-coding genes.

SciBite/EBI Patent Data: Through a partnership with EBI, I obtained proprietary data to measure
the gene-disease pairs targeted by each USPTO patent application (2001–2019). The data have been
compiled from complete patent texts using TERMite (TERM identification, tagging, and extraction), a
named entity recognition software developed by the Elsevier-owned startup SciBite (see Appendix D
for details). A manual validation of 200 random patents finds that SciBite’s entity recognition algorithm
has a precision rate of 95%–97% and a recall rate of 91%–92% and is thus highly reliable. I merge these
data with information on assignees and patent characteristics taken from PatentsView. Commonly used

9The first GWAS was published in Nature in 2005.
10Diseases are identified as unique MeSH concepts (Azoulay et al., 2021). Since the MeSH taxonomy is a hierarchical

tree, in my analysis I include all diseases at level 4 of the tree. The sample is further restricted to diseases that receive
more than one GWAS because I exploit subsequent GWASs to code which gene-disease associations are not replicated
and are thus likely to be false positives. See Section 3.4 for details.
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indicators of patent quality are from the OECD Patent Quality Indicators Database (Squicciarini et al.,
2013) and the data of Kogan et al. (2017). My final sample includes all pharmaceutical companies
applying for at least one USPTO patent between 2001 and 2019.

PubTator Central Publication Data: I use publicly available data from PubTator Central, which
provides computer-annotated genes and diseases for each paper published in PubMed. Next, I match
each patenting firm in my sample with their respective publication records using the information on
authors’ affiliations.11 Doing this allows me to code which firms had prior knowledge of the biology of
a specific human gene before deciding whether to invest in a relevant GWAS finding. This procedure
yields a very granular measure of gene-specific expertise, unlike previous studies that used corporate
publications as a generic firm-level proxy for absorptive capacity (Gambardella, 1992). Additional
bibliographic characteristics of firms’ publications are from the National Institutes of Health’s iCite
database.

Cortellis Drug Data: I supplement my data with proprietary information on drug molecules
collected by the Clarivate Analytics Cortellis Competitive Intelligence Database. For this study, I use
the drug development records in Cortellis, which contain development information for over 70,000
drugs up to July 2020 (Krieger, 2021). Cortellis aggregates information from various sources to
provide a comprehensive list of historical development milestones for each drug molecule. I use
data about new molecules observed entering the earliest phases of drug development (what Cortellis
records as the “discovery phase” and the “pre-clinical phase”).

Open Targets Score: Open Targets is a public-private partnership that collects all the available
evidence on the strength of gene-disease associations and summarizes it in a synthetic score. Experts
in the field consider Open Targets as providing the most comprehensive assessment of the genetic
roots of human diseases based on the available knowledge. I download the publicly available Open
Targets scores and merge them with my data.12 The score is available for 594,353 gene-disease pairs
(8% of my sample), spanning 17,437 genes and 366 diseases.

By putting together these data sources, I can trace an empirical search landscape that captures
all potential combinations of genes and diseases that pharmaceutical firms could select. Table 1
reports summary statistics at the gene-disease combination level, constituting the paper’s primary
unit of analysis. Around 21.8% of the 7,223,924 gene-disease pairs have received investments,
as proxied by their appearance in at least one patent application. Yet, only 0.19% of these pairs
have advanced to drug development stage, confirming the extremely skewed distribution of innovation

11The coverage of authors’ affiliations in PubMed is low and includes only the first author for papers published before
2013. To address this shortcoming, I obtained affiliation records for all PubMed articles from Dimensions.

12The data can be downloaded from https://platform.opentargets.org/. See Appendix E.2 for additional details.
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returns. GWASs have uncovered 17,965 new associations, constituting 0.25% of this vast combinatorial
landscape. The average gene-disease pair receives 0.13 patent applications per year. However, there
is a considerable variation, with some genetic targets receiving over 1,000 annual patents. Around
three-quarters of patents are filed by firms that have not previously published research on the targeted
gene. Descriptive evidence confirms that firms are more likely to patent gene-disease combinations
with higher therapeutic potential when they have been researching the gene involved (Appendix E.3).

3.4 Identifying False Positive Associations

GWASs conduct an unbiased, atheoretical search for genetic mutations associated with human diseases.
This feature is both a strength and a weakness: despite very stringent statistical significance thresholds,
it is well-known that many GWAS findings turn out to be statistical noise or spurious correlations
(Goldstein, 2009; Storey and Tibshirani, 2003). For the purposes of this paper, I need to empirically
measure which GWAS predictions proved false. The main challenge is that ex-post direct assessments
of gene-disease associations’ quality are only available for findings that received investments, resulting
in a classic missing data problem. Specifically, researchers can only observe the actual state of the
prediction when a decision maker chooses to act on it (Hoffman et al., 2018; Kleinberg et al., 2018).
In my setting, this issue would make it impossible to understand if GWAS associations that received
little attention were correctly avoided due to low potential or were mistakenly overlooked by firms
failing to recognize their value.

To distinguish true positives from false positives, I exploit the fact that diseases are often subject
to multiple GWASs over time. In particular, I categorize gene-disease associations as true positives
only if they are initially reported by a GWAS and later confirmed by subsequent GWASs focusing
on the same disease. This provides an intuitive way to identify likely false positives regardless of
the level of investment they received.13 Using this approach, I find that 84.3% of the 17,965 gene-
disease associations in my sample fail subsequent replications using different samples.14 This high
number aligns with accounts from experts who have long warned about the risks posed by big data in
genomics (MacArthur, 2012). Non-replicable findings can lead to an inefficient use of R&D resources,
misdirecting firms’ limited resources to targets without therapeutic potential (Freedman et al., 2015).

13Put otherwise, the genome-wide design of subsequent GWAS replications serves as a retest for all findings, thereby
providing assessments even for associations that have not received investments from firms. Note however that this
approach provides a conservative metric of which findings are false positive in a therapeutic sense since even replicable
associations might not offer avenues for treatment (Goldstein, 2009; Hermosilla and Lemus, 2019).

14The share of replicable associations increases from 15.7% to 25.4% when I consider GWASs targeting diseases not in my
sample. When including findings in intergenic regions, Marigorta et al. (2018) find that around 40% of associations are
replicable. One reason behind the lower replicability for findings related to protein-coding genes is the frequent mistakes
made by GWAS’ authors in mapping mutations into the correct corresponding genes (Visscher et al., 2017). This type
of mistake in reporting GWAS results provides an alternative empirical strategy that I leverage in Subsection 5.3.
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I validate the measure of false positives through three methods. First, I compare my coding with
the Open Targets score to measure the ground truth value of each gene-disease pair.15 Appendix Table
F.2 shows that replicable gene-disease associations are 114%–191% more likely to rank in the top
decile of the Open Targets score. Second, I investigate the characteristics of the study design that
predict which GWAS discoveries will replicate in subsequent studies. The data in Appendix Table
F.3 support the intuition that more robustly designed GWASs are less likely to report associations
classified as false positives. Finally, I present evidence in Appendix Table F.4 to confirm that true
positives are more likely to appear in articles that receive more citations in clinical trials and a lower
share of citations with a negative tone, as captured by the Scite data (Nicholson et al., 2021). Together,
these tests corroborate the approach used to identify false positives in GWAS associations.

4 Research Design
There are two main challenges to assessing the impact of data-driven predictions on innovation:
measurement and endogeneity. The first challenge arises from the difficulty of determining which
predictions a firm has observed. This becomes problematic when firms with domain knowledge obtain
systematically better predictions, thus conflating the prediction’s quality with the ability to interpret it.
The second challenge relates to identifying the causal effects of data-driven predictions. In practice,
firms are likely to mine for predictions where they expect the highest returns (e.g., for genes known to
be druggable), potentially leading to upwardly biased estimates. An ideal experiment would bypass
these issues by assigning all firms identical information on gene-disease associations. The causal
effect of data-driven predictions would then be evident from changes in patenting involving “treated”
gene-disease pairs relative to the others. Subsequently, I could then test my theoretical framework
with heterogeneity analyses by firms’ pre-existing domain knowledge.

I approximate this ideal experiment using the staggered publication of GWAS associations in
scientific journals. First, GWASs are mainly conducted by academic research teams,16 and their
findings are publicly accessible upon publication. As such, their findings are available to every
pharmaceutical firm simultaneously and are not driven by unobservable proprietary data or expertise
that they might have. Second, GWASs scan for genetic variants across the whole genome (Uffelmann
et al., 2021). This method, by design, avoids the issue of endogenous sorting since it does not focus
on specific genes. GWAS discoveries are therefore entirely unforeseen by the research team and even
more so by firms that later read about the findings in journals. Importantly, unbeknownst to the
scientists conducting the GWAS, only some of their findings will be confirmed in future publications.

15Out of the 17,965 gene-disease associations in my data, there are 16,298 pairs with an Open Targets Score.
16In my sample, 324 GWASs are co-authored by corporate scientists, and another 117 of them acknowledge funding from

pharmaceutical firms. However, all my results are robust to the exclusion of those GWASs (Appendix Table F.9).
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This presents a unique opportunity to study how firms react to true and false positive associations and
how their responses vary based on their domain knowledge.

I use OLS to estimate the following specification at the gene-disease combination level:

Yi,j,t = α+ βPostt ×GWASi,j + γGDi,j + δt ×Genei + ωt ×Diseasej + ϵi,j,t, (1)

where Yi,j,t is either a measure of investments or innovation outcomes by firms in year t involving
gene i and disease j. In alternative specifications, Yi,j,t is coded separately for firms with domain
knowledge (k = 1) and without it (k = 0). Postt×GWASi,j equals one after the first GWAS reports a
gene-disease association and equals zero otherwise. GDi,j are fixed effects for the combination of gene
i and disease j, which account for pair-specific differentials in research potential. I control for time-
varying disease-level differences in market size by including disease-year fixed effects (ωt×Diseasej).
Similarly, gene-specific time trends (δt × Genei) consider the growth of interest in specific genes.
Estimates report standard errors clustered two-way by gene and disease.17 The coefficient of interest β
captures the change in Yi,j,t for genes and diseases found correlated in early GWASs relative to those
reported later (or never within my sample period).

The main threat to identification is the potential sorting of data-driven predictions on gene-disease
pairs that would receive investments even without GWAS findings. However, in this study, this issue is
mitigated by two key factors. First, GWASs are distinct from targeted scientific studies in that they scan
every human gene. The genome-wide nature of GWASs ensures that there is no gene-level selection
conditional on the choice of disease to study, as reflected by the pattern of the associations uncovered
(Appendix Figures F.1 and F.2). Second, the timing of the findings is plausibly exogenous to trends
in the dependent variable. Indeed, the temporal order in which gene-disease pairs are reported in
a GWAS is not influenced by previous inventive activity related to those pairs (Appendix Table F.1
and Figure F.3). In what follows, I exploit this plausibly exogenous within disease timing variation
between genes to assess the causal effect of GWASs on firms’ early stage innovation investments.
Directly testing for the absence of pre-trends in the outcome variables will further confirm the validity
of my identification strategy.

5 Results
5.1 Do GWASs Lead to More Investments and Drugs in Aggregate?

I begin by examining the aggregate impact of GWAS findings on pharmaceutical innovation. Given
their uncertain reliability, it is unclear whether the publication of gene-disease associations will

17The precision of the results is robust to alternate methods of clustering standard errors, such as by gene, by disease, or
by gene-disease pairs.
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increase firms’ willingness to invest in a gene-disease combination. Columns 1 and 2 of Table 2
present the baseline results, using patent applications as an indicator for firm investment in a given
gene-disease pair. The main finding is a positive impact of GWAS, amounting to an average increase
of 125% in patents filed. The design of GWASs should ensure that the effects reported are not due
to researchers endogenously publishing on the most promising gene-disease pairs. Figure 3 directly
checks the validity of this assumption with an event study version of Equation 1. The plot confirms flat
pre-trends and a persistent effect after the GWAS is published, with the estimates stabilizing around
the value of the primary estimate of Table 2. Additional heterogeneity analyses in Appendix Table
F.5 reveal greater increases in patenting for associations that are statistically more robust or larger in
magnitude.

GWASs are known to harbor many false positive associations (MacArthur, 2012). In my sample,
84.3% of the associations involving a protein-coding gene fail to replicate in follow-up GWASs
targeting the same disease. The high incidence of misleading predictions would not be problematic if
firms could recognize and avoid them. Unfortunately, as shown in Columns 3 and 4 of Table 2, this is
not the case. The estimates imply that around 34.8% of the increase in patent applications is directed
at non-replicable gene-disease associations. Nevertheless, GWAS findings that were later confirmed,
albeit a minority, mustered up to three times more investments than the average effect. This large
increase is likely compounded by firms initially investing in false positives and then pivoting away
after learning about their mistake.

A case study exemplifies these dynamics. Panel (a) of Figure 4 shows patenting activity for the
PLA2G7-myocardial infarction pair after it was reported in a GWAS by Suchindran et al. (2010). While
GlaxoSmithKline was already investigating this specific pair, the GWAS led to a spike in investments by
new firms. Unbeknownst to them, the finding would later fail to translate into therapeutic advances.18 In
2014, GlaxoSmithKline announced the failure of two clinical trials for darapladib, a molecule targeting
PLA2G7. This led other firms to redirect their investments toward alternative targets (Krieger, 2021).
The same dynamics can be seen in an event study regression where I keep only false positive GWAS
associations in the sample (Panel (b) of Figure 4). Patenting initially rises and then declines, most
likely when firms experimentally discover that the finding is not robust.

The allocation of investments toward false positives hurts firm performance because only valid
associations yield successful innovation outcomes. Table 3 indicates that highly cited and high-value
patents increase for GWAS associations that are later replicated, but not for the others. The estimates

18To date, the precise function of PLA2G7 is still unclear. The consensus is that it may be a non-causal biomarker (i.e., an
indicator) for the risk of cardiovascular disease, which could contribute to explaining the low Open Targets score (0.045)
and the failure to be confirmed in GWAS replications. By comparison, the IL23R-IBD pair uncovered by Duerr et al.
(2006), and discussed in Appendix B.2, has an Open Targets score of 0.468 and has been robustly replicated.
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relating to drug discovery are also positive but noisier, probably because successful drug development
is an infrequent outcome. In Column 4, I follow the approach of Dranove et al. (2022) and weigh
each drug by its scientific novelty, captured by the number of previous drugs that adopted the same
molecular-targeting design.19 The coefficient becomes more precise, suggesting that GWAS leads
are especially helpful in designing drugs that leverage new scientific approaches. Overall, these
results suggest that GWAS can boost pharmaceutical investments, consistent with the first prediction
of my theoretical framework. However, their impact on innovation is more nuanced because they also
produce several false positive leads. If these are not avoided, they can lead to a waste of resources and
reduce firms’ technological performance.

5.2 Data-Driven Predictions, Domain Knowledge, and Firm Performance

This subsection explores how data-driven predictions interact with firms’ domain knowledge. Previous
studies have used R&D expenditures (Cohen and Levinthal, 1990; Fabrizio, 2009) or the number of
corporate publications (Cockburn and Henderson, 1998; Gambardella, 1992) to identify a firm’s
knowledge. However, these proxies do not capture the specific domains in which the firm has the
knowledge to recognize opportunities. I make progress on this issue by recording the specific genes
that each firm has researched in its publications. This empirical approximation is grounded in the
specificities of the setting. In my interviews with industry professionals, they confirmed that firms
in the bio-pharma sector tend to specialize in genetic space.20 Some firms go as far as making the
selection of their target genes their fundamental competitive hypothesis. For instance, the biotech
company Denali Therapeutics even mentioned its strategic focus on what it calls “degenogenes” in its
IPO filings (Appendix D.3). My empirical approach captures the fact that when a new gene-disease
association involving one of these genes is published, Denali’s scientists will have the expertise to
assess it.21

My research design exploits between-firm variation in genetic knowledge predating GWASs, as
schematically illustrated in Appendix Figure F.4 (Cattani, 2005). Columns 1 and 3 of Table 4 present
results comparing patent applications filed by firms with and without previous publications on the
gene involved in a GWAS finding. While both groups of firms significantly increase their investments,

19Dranove et al. (2022) refer to the term “molecular-targeting design” as the mechanism by which drugs produce a
pharmacological effect (e.g., darapladib inhibits Lp-PLA2, thus being an “Lp-PLA2 inhibitor”). This measure captures
which drugs are more novel from a scientific perspective. Other approaches in the literature include considering the
molecule’s chemical novelty instead of its biological mechanism (Krieger et al., 2022).

20The patent portfolio of the median firm in my sample spans only 19 genes, a number that further decreases to 11 if
considering only patents that will eventually be granted (Appendix D).

21As one of my interviewees at Denali put it, whether to pursue or not a new genetic target appearing in the literature is an
assessment based on their extensive domain expertise: “We are so entrenched in the neuro field that we kind of know
off-the-cuff” (Interview, 17 October 2022).
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there is a stronger reaction by firms lacking gene-specific knowledge. Compared to the sample mean,
the regression coefficients imply that patenting increases by one-third more among firms that had not
previously researched the gene before the GWAS was published. This confirms the second empirical
implication of my theoretical framework: firms without domain knowledge will invest more after
observing identical data-driven predictions.22

Next, I investigate if firms with relevant domain knowledge can correctly rank data-driven predic-
tions and avoid those likely to be false positives (Arora and Gambardella, 1994; Cohen and Levinthal,
1994). Appendix Figure F.6 descriptively shows the reaction of firms with and without domain
knowledge to newly published gene-disease associations. Strikingly, the increase in patenting based
on a false positive is over three times larger for firms without past research on the gene. I validate
the statistical significance of this pattern with difference-in-differences regressions (Columns 2 and
4 of Table 4). The results confirm that the increase in patenting on false positive associations is
significant only for firms without prior research on the gene, supporting the idea that such firms lack
the knowledge to evaluate the findings. Mapping this result back to my theoretical framework, patent
applications building on false positive associations constitute errors of omission that distort resources
away from pursuing valuable leads.

However, the above results leave open the possibility that domain knowledge simply increases
skepticism of data-driven predictions (Boudreau et al., 2016; Denrell and Fang, 2010). Under this al-
ternative explanation, avoiding false positives might mechanically result from lower investments made
by conservative firms, potentially at the cost of curtailing the exploration of valuable opportunities.
I rule out this possibility using the Open Targets data to capture the underlying therapeutic value of
gene-disease pairs with a continuous score.23 Figure 5 shows that firms with domain knowledge are
better at selecting the most valuable opportunities among the data-driven predictions. This result also
implies that firms without domain expertise are more likely to make omission errors despite investing
quantitatively more, while firms with genetic expertise are less likely to miss out on breakthroughs
despite investing quantitatively less.24 Taken together, the results support the third empirical implica-
tion of my theoretical framework: domain knowledge increases the efficiency of investments, allowing
firms to focus their efforts on promising data-driven opportunities.

22Since larger firms also have broader knowledge bases, one might assume that this result reflects organizational inertia. To
rule out this concern, I repeat my analysis for small and large firms separately. I find the same result in both sub-samples:
GWAS generate stronger reactions from firms without domain knowledge regardless of their size (Appendix Figure F.5).

23While available only for a subset of gene-disease pairs in my sample, this metric offers a way to rank the “ground truth”
value of the combinations highlighted by GWAS associations. See Appendix E.2 for a detailed discussion.

24The better allocation of early stage investments by firms with domain knowledge translates into more drug molecules
entering the discovery stage (Appendix Table F.6). However, these results should be interpreted with caution since firms
in this industry frequently license promising compounds for later stages of drug development (Gambardella et al., 1995).
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5.3 Robustness Checks
Several robustness checks further validate these findings. First, I replicate the main results by exploiting
a unique feature of GWASs. After spotting genetic mutations correlated with the disease, scientists
must map the mutation to the correct gene (Visscher et al., 2017).25 Especially at the beginning of the
sample, the gene reported in the original study was sometimes incorrect but later reclassified with more
precision by the curators of the GWAS Catalog. In my data, there are 9,273 such cases. Confirming
my primary results, Table 5 shows that only firms without domain knowledge increase investments
based on these wrongly reported data-driven associations. This additional test has the advantage of
not depending on my method for identifying false positives in the primary analysis.

Second, if domain knowledge truly helps in assessing the value of ambiguous data-driven predic-
tions, then its beneficial effects should be proportionally higher when the GWAS findings are harder to
evaluate. For instance, evaluating an association should be more difficult when firms cannot leverage
publicly available scientific information or when the GWAS reports too many new findings to validate.
Indeed, firms without domain knowledge are more likely to fall into the trap of false positives when
the findings involve less-studied genes (Appendix Table F.7), but they make fewer mistakes when the
GWAS reports fewer associations to evaluate (Appendix Table F.8). Results are also robust to the
exclusion of GWASs co-authored with industry researchers, suggesting that social connections with
scientists are not a mechanism through which firms active in research can evaluate GWAS findings
(Appendix Table F.9).

Third, I examine whether patenting based on false positive findings is motivated by strategic
reasons, implying that doing so is not detrimental to firms’ performance, even if it does not result in
discovering new drugs. A few pieces of evidence help rule out this possible explanation. First, using
two alternative methods to identify patents likely to be motivated by strategic concerns (Abrams et al.,
2018; Righi and Simcoe, 2020), I find the firms are more likely to apply for such patents based on true
positive associations (Columns 1 and 2 of Appendix Table F.10). Intuitively, this finding is consistent
with the idea that there is little strategic value in targeting associations that do not have therapeutic
value. Second, patents targeting false positive leads are less likely to end up in litigation or being
renewed by the firm, suggesting their actual strategic usefulness is low (Columns 3 and 4 of Appendix
Table F.10).

Finally, it could be that pursuing false positive predictions results in learning spillovers for the
firms. This possibility would imply that the cost of selecting the wrong target is much lower for the

25More specifically, they have to identify the location of molecular markers on the genome relative to the coordinates
of known genes (Vaughan and Srinivasasainagendra, 2013). For earlier GWASs, this step was not fully routinized,
and it was not uncommon to attribute the mutation to the wrong gene (usually a neighboring one). Wrongly mapped
associations are 62.3% less likely to be replicated compared to correctly reported findings.
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firm, consistent with recent work in a similar context (Frankel et al., 2023). To test this, I examine
innovation outcomes for gene-disease pairs involving the same gene and a similar disease of the GWAS
associations.26 Appendix Table F.11 shows no evidence of spillover effects on innovation outcomes,
suggesting that the beneficial effects of experimentally learning from mistakes are likely low in this
context.

6 Firm-Level Mechanisms
The previous section showed that domain knowledge allows firms to recognize false positive predictions
and focus investments on valuable opportunities. In this section, I investigate the mechanisms behind
these results. First, although my analysis used corporate publications to find the specific genes on which
firms had expertise, the results might reflect organizational capabilities that also apply to unstudied
genes. Second, the ability to recognize opportunities could stem from different organizational learning
mechanisms (Di Stefano et al., 2023; Zollo and Winter, 2002). In particular, domain knowledge could
either decrease the cost of directly testing predictions (“online learning”) or help firms apply theoretical
principles to evaluate predictions (“offline learning”) (Gavetti and Levinthal, 2000). In what follows,
I provide suggestive evidence to explore these mechanisms.

6.1 Empirical Strategy
The findings in the previous section are drawn from split-sample regressions at the gene-disease level
that exploit between-firm variation in gene knowledge. In this section, I exploit an alternative source
of variation: the within-firm heterogeneity in the available knowledge about different human genes.
Panel (a) of Figure 6 provides a graphical intuition for this research design. The basic intuition is akin
to the preceding section since firms might better understand the biological mechanisms of specific
genes than others due to their past research choices. However, this research design benefits from the
ability to include firm fixed effects in the regression models. As a result, the estimates effectively
control for all non-time-varying unobservable firm characteristics that correlate with their ability to
recognize valuable opportunities.

For this analysis, I construct a dataset where each observation represents a potential firm investment
in a gene-disease pair supported by GWAS evidence. This data structure allows me to investigate the
investment decisions of firms that observe data-driven predictions. I assume that firms consider all
GWAS findings about diseases in which they have previously invested.27 Pharmaceutical firms are
usually active in specific diseases (that can be thought of as markets), which gives a convenient way

26The hierarchical nature of the MeSH disease taxonomy provides an easy way to find diseases that share the same etiology
and biological mechanisms. More specifically, I consider a disease (i.e., a four-digit MeSH code) similar to the one
targeted by the GWAS if it shares the same “parent” disease (i.e., the same three-digit MeSH code).

27This choice is consistent with what emerged from my interviews: “I would say we definitely pay attention to GWAS
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to assemble the risk set of GWAS associations that are likely to catch their attention (Bikard, 2018;
Krieger, 2021). While the earlier regressions at the gene-disease level offer a more accurate estimate
of GWASs’ aggregate impact, the within-firm design provides a tighter way to isolate the impact of
domain knowledge on firm investments. However, variation in firms’ past research portfolios is not
random, and so the following results should be interpreted as suggestive correlations.

I use OLS to estimate the following specification at the firm-gene-disease level:

Yf,i,j = α+ βDomainKnowledgef,i,j + µf,j + θi,j + ϵf,i,j , (2)

where Yf,i,j is the number of patents by firm f targeting the gene-disease combination < i, j >.
DomainKnowledgef,i,j is a dummy that equals one if the firm possesses domain knowledge about
the gene involved in the gene-disease association. µf,j are firm-by-disease dummies, accounting for
firm specialization in specific disease areas as well as potential differences in how firms weigh errors
of omission against errors of commission (Csaszar, 2013).28 θi,j is a time effect that controls for the
year when the gene-disease association is published. The coefficient of interest β captures how a firm’s
investment decisions change when it can leverage genetic knowledge to evaluate the GWAS finding.
Estimates report standard errors clustered at the firm level.

6.2 How Does Domain Knowledge Help?
I begin by replicating the main results of the paper using within-firm variation. Table 6 presents
results consistent with the gene-disease-level evidence. Column 1 shows that firms are significantly
less likely to invest in a false positive when they can draw upon their knowledge of gene biology.29
This result is robust to including stringent firm × disease fixed effects that better account for firm
specialization in specific disease areas (Column 2). Columns 3 and 4 symmetrically show that domain
knowledge increases the likelihood of recognizing valuable data-driven opportunities. Using the Open
Targets score, Panel (b) of Figure 6 visually displays how theoretical knowledge enables firms to
be more efficient and targeted in their investments, consistent with my theoretical framework. In

studies. Any time there is a GWAS study that, you know, that chose an indication that we’re interested in, we definitely pay
attention” (Interview, 9 December 2022). In the appendix, I experiment with alternative ways to define the appropriate
risk set of GWASs evaluated by a firm, finding consistent results (Appendix Tables F.13 and F.14).

28For instance, an alternative explanation of my previous findings could be that firms follow different strategies regarding
false positives. Firms that prioritize minimizing the risk of missing a valuable target might be willing to incur several
commission errors, and vice versa. Including firm fixed effects helps rule out that the results are driven by firms pursuing
different strategies regarding the weight given to type I vs. type II errors. This is because if the relative disutility of
a false negative relative to a false positive is a fixed firm-specific parameter, the firm-fixed effect will absorb it. The
additional inclusion of firm-by-disease fixed effects would also consider the more likely case that this parameter depends
on the specific disease (e.g., for Abbvie, missing out on a Crohn’s disease target might be worse than doing so for other
diseases where it does not specialize).

29Note that including firm fixed effects changes the interpretation of the estimates. In this case, the coefficient captures the
decrease in patenting based on false positive associations when a firm has domain knowledge, compared to other false
positives where the firm lacks such expertise.
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addition to confirming earlier analyses, these findings suggest that the main results are not due to
organizational-level capabilities but rather to the specific distribution of knowledge across genes.

Next, I explore what type of domain knowledge is conducive to my results. A long tradition in the
management literature has emphasized how organizations can learn routines to perform even complex
operations, such as selecting innovation projects (Dosi et al., 2001; March and Simon, 1958; Nelson
and Winter, 1982). This line of work emphasizes the tacit and often poorly understood nature of these
heuristics (Zollo and Winter, 2002). In contrast, a growing strand of research highlights the importance
of developing theory-based understandings to guide action (Camuffo et al., 2023b; Ehrig and Schmidt,
2022; Gavetti and Levinthal, 2000; Wuebker et al., 2023). Recent evidence shows that experience
unlocks higher performance only when accompanied by an understanding of the causal relationships
between antecedents and outcomes (Di Stefano et al., 2023). In my setting, this would suggest that the
ability to recognize valuable GWAS findings stems from understanding the underlying mechanisms of
what makes an opportunity valuable rather than from mere practice or testing capabilities that permit
cheap validation of alternatives.

I categorize firms’ knowledge types to shed some light on this issue by distinguishing firms’
publications that denote testing capabilities from those focused on the genetic mechanisms of diseases.
Following the approach of Azoulay et al. (2021), I record which firm publications have a clinical focus
and which ones are translational research that applies basic genetic research to therapeutic purposes.30
I also code firms that have conducted disease-oriented research or filed patents that target the same
disease but not the same gene. I then run separate regressions using each of these proxies for domain
knowledge. Figure 7 shows that only translational knowledge aids in correctly avoiding false positive
associations among the GWAS findings. Instead, clinical research or generic experience with the
disease do not confer any advantage when assessing GWAS findings, nor do general-purpose inventive
capabilities (Arora and Gambardella, 1994). This evidence suggests that my results are not driven by
cheaper experimentation costs but by the ability to apply basic scientific principles to rule out spurious
gene-disease associations (Di Stefano et al., 2023; Fleming and Sorenson, 2004).

Finally, one might question why firms do not wait for the uncertainty surrounding a gene-disease
association to dissipate. For instance, a firm could hold back until further research validates the finding
or strategically delay investments to observe competitors’ actions (Krieger, 2021). Appendix Table
F.15 shows suggestive evidence that waiting before investing in a GWAS finding reduces the likelihood

30Intuitively, I divide domain knowledge into testing knowledge and translational knowledge. Firms with clinical experience
can cheaply learn the plausibility of GWAS associations with wet lab testing (“online learning”), while those with
translational experience can evaluate findings based on their theoretical understanding of genetics (“offline learning”).
The data on clinical publications are from NIH’s iCite database while the definition of translational research is taken
from Azoulay et al. (2021).
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of targeting a false positive association. However, it seems to come at the cost of lower-impact patents
and lower chances of discovering a drug (albeit the results are noisier in this case). Moreover, since
patenting results in claiming intellectual property space, being late might result in fewer avenues for
future innovation (Eggers, 2012). This result illustrates how data-driven predictions generate a tension
between carefully validating them and investing ahead of competitors. By enabling the “offline”
evaluation of alternatives (Gavetti and Levinthal, 2000; Levinthal, 2021), domain knowledge becomes
a crucial means to benefit from data-driven predictions.

7 Conclusion
While the field of strategic management has extensively researched how firms can exploit innovation
opportunities, the rapid diffusion of big data and predictive tools is transforming how firms identify
them. In particular, data-driven predictions offer new avenues for assessing the value of potential
investments instead of leveraging domain knowledge. This paper provides some of the first empirical
evidence of the consequences of this phenomenon. I introduce a new conceptual and empirical
framework to analyze how data-driven predictions and firms’ domain knowledge interact to shape
innovation performance. Moving beyond the average effects of data-driven predictions in triggering
investments, I show how the distribution of false positive findings is crucial to understanding their
heterogeneous impact on innovation outcomes.

My results underscore the continuing importance of domain knowledge in the innovation process
but with a new role: since the abundance of data-driven predictions is not accompanied by a generalized
reduction in the cost of validating them, domain knowledge becomes essential to avoid wasting
resources on dead ends. My framework also highlights the boundary conditions of this reasoning.
If predictive tools were perfectly accurate or validating their predictions was costless, the need to
prioritize among data-driven predictions would be lower. However, this is not the case in many
innovation and strategy contexts. My theory reconciles conflicting results in previous research by
suggesting that when data-driven findings are straightforward to interpret, firms can rank them without
relying on domain knowledge, thus benefiting new entrants (Nagaraj, 2022). Conversely, one should
expect that understanding the domain is a necessary complement to benefit from data predictions in
complex domains (Kao, 2023).

Further, the innovation process is often depicted as a search through landscapes of technologi-
cal combinations (Fleming and Sorenson, 2004; Levinthal, 2021). Traditional research in this area
frequently uses computer simulations to characterize optimal exploration strategies and their organiza-
tional implications (e.g., Csaszar 2013). In contrast, this paper joins a recent effort to try to empirically
characterize organizational search (Kang, 2023; Nagaraj, 2022) and how different search strategies
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map into innovation outcomes (Tranchero, 2023). It conceptualizes and exemplifies a new measure-
ment strategy to depict empirical landscapes using text-based methods, opening up new avenues for
an empirical re-examination of the seminal contributions in the field of organizational search (Dosi
et al., 2001; March and Simon, 1958; Nelson and Winter, 1982).

My research has practical implications for managers and policymakers navigating the changing
landscape of AI and predictive technologies. To cut through the hype surrounding big data, it is essential
to understand what predictive technologies can and cannot do (Agrawal et al., 2018). Specifically, this
paper proposes that while data-driven predictions are valuable in shortlisting potential opportunities—
which is no small feat—they are not without limitations. This is especially true in the context of what
Camuffo et al. (2023a) call “low-frequency/high-impact” organizational decisions. In these contexts,
the source of competitive advantage lies in the ability to interpret and evaluate what the data suggest.
Managers should be mindful that predictive technologies are no free lunch since their benefits may
be most evident to organizations that already have a solid base of domain knowledge. Similarly,
governments funding large-scale data efforts, which are especially common in the bio-pharmaceutical
world, should note how they might affect competition dynamics. Instead of being a panacea to foster
entry and market dynamism, large-scale mapping efforts might contribute to stifling competition.
Policymakers may need to take action to avoid unintended anti-competitive effects from databases that
require complementary assets to be exploited.

More broadly, predictive technologies allow innovators to identify promising areas of the tech-
nological landscape, shifting the focus from theory-driven searches to inductive methods (Strasser,
2019). As a result, data-based correlations and extrapolations increasingly guide organizational
decision-making instead of logical reasoning and domain knowledge. While the popular press often
hails the benefits of these developments (Anderson, 2008; Schmidt, 2023), the risk of not understand-
ing why innovations work could be the accumulation of an “intellectual debt” (Kim, 2023b; Zittrain,
2019). This risk is especially evident in fields like drug discovery, where AI is used to find drugs with
unknown mechanisms of action, thus preventing the anticipation of potential side effects (Heaven,
2023). With firms hungry to find innovation opportunities while progressively shying away from in-
vesting in domain knowledge (Arora et al., 2018), more research is needed to understand the nuanced
implications of putting data ahead of theoretical understanding (Tranchero, 2023). This paper serves
as a first step in this direction.

Finally, despite the contributions outlined above, a few limitations of this paper should be ac-
knowledged. First, fully capturing the aggregate effects of GWASs on innovation is beyond its scope.
Data-driven predictions in genomics might give rise to a “streetlight effect” (Hoelzemann et al., 2023),
potentially diverting investments into suboptimal targets with negative consequences for social welfare.
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Moreover, since I do not observe costs directly, the corresponding implications for firm profitability
are also beyond the scope of this study.31 Second, this paper does not explore the strategic responses
of firms without domain knowledge. It is conceivable that a market for expertise could emerge, where
firms outsource not the generation of ideas (Piezunka and Dahlander, 2015) but expert judgment (Luo
et al., 2021) to assess the potential of data-driven opportunities and avoid false positives. Finally, while
my research design focuses on holding the content of data-driven predictions constant to study firm re-
sponses, another critical dimension to explore is heterogeneity in prediction quality. Identifying which
firms can obtain better predictions and understanding the organizational factors that influence this are
first-order questions. Further exploration of these ideas is an exciting avenue for future research.

31However, back-of-the-envelope analyses suggest sizable opportunity costs tied to pursuing false positive GWAS findings,
and additional tests rule out learning spillovers from these false positives.
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8 Figures and Tables

Figure 1: Example and schema of a typical GWAS

(a) Abstract of the GWAS that identified IL23R as a ther-
apeutic target for Crohn’s disease

(b) Schema of a typical GWAS (c) Schema of Duerr et al. (2006)

Note: Panel (a) shows the abstract of the Duerr et al. (2006) GWAS published in Science. The abstract highlights the
potential implications of using the IL23R gene as a target to cure inflammatory bowel diseases. Panel (b) shows a schema
of how a GWAS unfolds. First, the researchers select the disease of interest and assemble a group of cases (subjects
showing the condition) and one of controls (healthy subjects). Then, the genome of people with and without the condition
is genotyped in search of differences. Finally, statistical methods are used to test the association between any genetic
mutation and the disease of interest. The panel at the bottom is the characteristic “Manhattan plot,” which indicates the
location of the statistically significant genetic variants in the chromosome. On the Y axis, there is the strength of the
finding expressed as -log10(p-value), hence higher values correspond to stronger associations. Panel (c) shows the same
schema for the GWAS of Duerr et al. (2006). See Appendix B.2 for a detailed case study.
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Figure 2: Pharmaceutical firms search for drugs in an empirical landscape of gene-disease pairs

Note: The figure exemplifies the novel measurement approach adopted in this paper. Machine learning tools are used
to extract genes and diseases from patent and paper texts to map them onto an empirical landscape of gene-disease
combinations. The heterogeneous impact of GWASs on firm investments can be measured by tracking patenting at the
gene-disease combination level, avoiding the use of patent citations. APOJ is an alternative name of the CLU gene. See
the conceptual details in Appendix C.

Figure 3: Time-varying estimates of GWASs’ impact on firm innovation investments

Note: The figure shows the event study coefficients estimated from the following specification:
Patent Applicationsi,j,t = α +

∑
z βzGWASi,j × 1(z) + γGDi,j + δt × Genei + ωt × Diseasej + ϵi,j,t. The

dependent variable is the number of USPTO patent applications targeting a specific gene-disease combination. The chart
plots values of βz for different lags z before and after the publication of the first GWAS finding about the gene-disease
pair. Regressions include gene × year and disease × year fixed effects, as well as gene-disease combination fixed effects.
Standard errors are clustered two-way at the gene and disease level.
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Figure 4: Firms investing based on false positive GWAS findings pivot away over time

(a) PLA2G7 - myocardial infarction (b) Time-varying impact of false positive GWASs

Note: Panel (a) shows the count of yearly USPTO patent applications targeting the PLA2G7 - myocardial infarction
gene-disease pair. The green line in 2010 marks the publication of Suchindran et al. (2010), while the red line in 2014
marks the failure of clinical trials for Darapladib, a GlaxoSmithKline drug targeting this combination. Panel (b) shows
the event study coefficients from the same specification of Figure 3. The dependent variable is the number of USPTO
patent applications targeting a specific gene-disease combination. The chart plots values of βz for different lags z before
and after the publication of a GWAS finding about the gene-disease pair that is not subsequently replicated. Regressions
include gene × year and disease × year fixed effects, as well as gene-disease combination fixed effects. Standard errors
are clustered two-way at the gene and disease level.

Figure 5: Firms with domain knowledge invest proportionally more on the top tail of data-driven
opportunities, while those lacking it invest mostly on gene-disease associations of low-value

Note: This figure shows the increase in USPTO patent applications on a gene-disease pair after the publication of a GWAS,
as a share of the sample average. The increase is estimated with split-sample regressions that consider gene-disease pairs
of different therapeutic potential, as proxied by the Open Targets score. Details on the regressions are reported in Appendix
Table F.12.
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Figure 6: A within-firm research design confirms that domain knowledge improves the assessment of
GWAS predictions and helps to select only the opportunities with higher Open Target scores

(a) Schema of the within-firm research design (b) Impact of domain knowledge on investments’ quality

Note: Panel (a) exemplifies the within-firms design to isolate the role of domain knowledge in interpreting GWASs and
determining performance. The research design exploits the fact that a firm might be evaluating multiple findings for the
same disease, but has done genetic research only on a subset of the genes involved. Panel (b) shows coefficients from
split-sample regressions evaluating the within-firm impact of genetic knowledge on firms’ ability to recognize the best
GWAS findings. The ground truth quality of the gene-disease association uncovered by GWAS is proxied by the percentile
of the Open Targets score. The regressions include firm × disease and year of discovery dummies.

Figure 7: The ability to avoid false positives is driven by translational knowledge that permits a
scientific evaluation of GWAS findings, but not by clinical knowledge or generic disease experience.

Note: This figure shows results separately for firms with different types of domain knowledge. Each coefficient is
estimated from a separate regression with the same dependent variable. Patent applications in false positives: count of
USPTO patent applications targeting a specific gene-disease combination that is not replicated by subsequent GWASs.
Translational publication: 0/1 = 1 if the firm has published at least one previous translational paper involving the gene,
according to the definition by Azoulay et al. (2021). Clinical publication: 0/1 = 1 if the firm has published at least one
previous clinical paper involving the gene, using the classification of NIH iCite. Disease publication: 0/1 = 1 if the firm
has published at least one previous paper involving the disease but not the specific gene. Previous patents: 0/1 = 1 if the
firm has applied for at least one previous patent targeting the gene involved.

36



Table 1: Summary statistics

Panel A: cross-sectional descriptives
mean median st d min max N

Ever a patent (0/1) 0.2182 0 0.4131 0 1 7,223,924
...by firms with gene knowledge (0/1) 0.0478 0 0.2134 0 1 7,223,924
...by firms without gene knowledge (0/1) 0.2102 0 0.4074 0 1 7,223,924
Ever a drug (0/1) 0.0019 0 0.0433 0 1 7,223,924
Ever treated by GWAS (0/1) 0.0025 0 0.0498 0 1 7,223,924
Has Open Targets Score (0/1) 0.0823 0 0.2748 0 1 7,223,924
Open Targets Score 0.0401 0.0074 0.0872 0.00004 0.8975 594,353

Panel B: panel-level descriptives
mean median st d min max N

Patent applications 0.1314 0 1.6831 0 1346 137,254,556
...by firms with gene knowledge 0.0376 0 1.0875 0 1346 137,254,556
...by firms without gene knowledge 0.0938 0 0.9243 0 1257 137,254,556
Cit-weighted patents 7.1358 0 85.5509 0 39,899 137,254,556
New drugs (total) 0.0002 0 0.0203 0 22 137,254,556
New drugs (weighted) 0.0001 0 0.0064 0 3.25 137,254,556
Treated by GWAS (0/1) 0.0005 0 0.0234 0 1 137,254,556
True positives (0/1) 0.0001 0 0.0013 0 1 137,254,556
Year 2010 2010 5.4772 2001 2019 137,254,556

Note: This table lists summary statistics at the gene-disease combination level for 7,223,924 combinations (Panel A) and at the gene-disease-year level for
a balanced panel of 137,254,556 observations (Panel B). Ever a patent: 0/1 =1 if the gene-disease combination appeared in at least one patent application.
Ever a patent by firms with gene knowledge: 0/1 =1 if the gene-disease combination appeared in at least one patent application by firms with previous
publications on the gene involved. Ever a patent by firms without gene knowledge: 0/1 = 1 if the gene-disease combination appeared in at least one patent
application by firms without previous publications on the gene involved. Ever a drug: 0/1 = 1 if the gene-disease combination is targeted by at least one
drug in the discovery stage. Ever treated by GWAS: 0/1 = 1 if the gene-disease combination is ever treated by a GWAS. Has Open Targets Score: 0/1 =
1 if the gene-disease combination has an Open Targets Score. Open Targets Score: average value of the Open Target Score (for gene-disease pairs that
have it). Patent applications: count of USPTO patent applications that target a specific gene-disease combination. Patent applications by firms with gene
knowledge: count of USPTO patent applications that target a specific gene-disease combination filed by firms with previous publications on the gene
involved. Patent applications by firms without gene knowledge: count of USPTO patent applications that target a specific gene-disease combination filed
by firms without previous publications on the gene involved. Cit-weighted patents: count of USPTO patent applications that target a specific gene-disease
combination weighted by citations received up to 7 years after their publication. New drugs (total): number of molecules on a gene-disease combination
entering the discovery stage. New drugs (weighted): number of molecules on a gene-disease combination entering the discovery stage weighted by their
scientific novelty (i.e., by the number of times that the same mechanism of action has been used before, following Dranove et al. 2022). Treated by GWAS:
0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS. True positives: 0/1 = 1 for GWAS findings that are later replicated by another
GWAS about the same disease. Year: average year of observations in the panel.
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Table 2: Pharmaceutical firms heavily increase their investments in gene-disease combinations that
receive a GWAS, even if the association is a false positive finding

Dependent Variable: USPTO patent applications

Post × GWAS 0.2681*** 0.1637*** 0.1532*** 0.0676***
(0.02206) (0.01985) (0.01779) (0.01605)

...× True Positive 0.5739*** 0.4802***
(0.08545) (0.07693)

Gene-Disease FE YES YES YES YES
Disease FE YES NO YES NO
Gene FE YES NO YES NO
Year FE YES NO YES NO
Disease-Year FE NO YES NO YES
Gene-Year FE NO YES NO YES
N of Observations 137,254,556 137,254,556 137,254,556 137,254,556
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 0.1314 0.1314 0.1314 0.1314

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways
at the disease and gene level. USPTO patent applications: count of USPTO patent applications (by all firms) filed in a given year that target a specific
gene-disease combination. Post × GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS. True Positive: 0/1 = 1 for GWAS
findings that are later replicated by another GWAS about the same disease.

Table 3: Only investments based on true positive GWAS associations yield valuable patents or new
drugs entering the discovery stage

Dependent Variable: Cit-weighted patents Patent market value Drugs (total) Drugs (weighted)

Post × GWAS -0.2738 0.2338 -0.0004 -0.0000
(0.51521) (0.14649) (0.00026) (0.00008)

...× True Positive 5.2464** 2.6963*** 0.0011 0.0009*
(1.83822) (0.74601) (0.00393) (0.00043)

Gene-Disease FE YES YES YES YES
Disease-Year FE YES YES YES YES
Gene-Year FE YES YES YES YES
N of Observations 137,254,556 137,254,556 137,254,556 137,254,556 7
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 7.1358 0.6317 0.0002 0.0001

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at the disease and gene level.
Post × GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS. True Positive: 0/1 = 1 for GWAS findings that are later replicated by another GWAS about
the same disease. Cit-weighted patents: count of USPTO patent applications filed in a given year that target a specific gene-disease combination, weighted by the number of patent
citations received up to seven years after patent publication. Patent value: estimated stock market value (in constant USD) of patents granted to public firms using data from Kogan
et al. (2017). Drugs (total): number of molecules on a gene-disease combination entering the discovery stage. Drugs (weighted): number of molecules on a gene-disease combination
entering the discovery stage weighted by their scientific novelty (i.e., by the number of times that the same mechanism of action has been used before, following Dranove et al. 2022).
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Table 4: Firms with genetic domain knowledge are able to avoid false positive associations but invest
proportionally less in gene-disease combinations that receive a GWAS

Dependent Variable: USPTO patent applications by...

...firms with
gene knowledge

...firms w/out
gene knowledge

Post × GWAS 0.0381*** 0.0138 0.1256*** 0.0539***
(0.01009) (0.00821) (0.01429) (0.01052)

...× True Positive 0.1216** 0.3586***
(0.03917) (0.05837)

Gene-Disease FE YES YES YES YES
Disease-Year FE YES YES YES YES
Gene-Year FE YES YES YES YES
N 137,254,556 137,254,556 137,254,556 137,254,556
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 0.0376 0.0376 0.0938 0.0938

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways
at the disease and gene level. USPTO patent applications: count of USPTO patent applications filed in a given year that target a specific gene-disease
combination; the count is then divided between firms with and without previous publications on the gene. Post × GWAS: 0/1 = 1 in all years after a
gene-disease pair is treated by its first GWAS. True Positive: 0/1 = 1 for GWAS findings that are later replicated by another GWAS about the same disease.

Table 5: Firms with genetic domain knowledge avoid investing in GWAS associations that mistakenly
report the wrong gene

Dependent Variable: USPTO patent applications by...

...all firms ...firms with
gene knowledge

...firms w/out
gene knowledge

Post × Wrong Gene 0.0986* -0.0467 0.1453***
(0.04945) (0.03994) (0.02609)

Gene-Disease FE YES YES YES
Disease-Year FE YES YES YES
Gene-Year FE YES YES YES
N 136,935,850 136,935,850 136,935,850
N of Gene-Diseases 7,207,150 7,207,150 7,207,150
Mean of Dep Var: 0.1304 0.0372 0.0931

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year
level. The sample is slightly smaller because it excludes gene-disease pairs that receive a correctly reported
GWAS association. Std. err. clustered two-ways at the disease and gene level. USPTO patent applications:
count of USPTO patent applications filed in a given year that target a specific gene-disease combination; the count
is then divided between firms with and without previous publications on the gene. Post × Wrong Gene: 0/1 = 1
in all years after a gene-disease pair is treated by its first GWAS that includes a wrongly reported protein-coding
gene (i.e., that is later reclassified by the curators of the GWAS Catalog).
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Table 6: Genetic domain knowledge allows recognizing both false and true positive GWAS associations
in a within firm-design, ruling out that the effects are due to generic firm-level capabilities

Dependent Variable: Sum of USPTO patent applications

Sample: False Positive Associations True Positive Associations

Has Gene Knowledge (0/1) -0.1297*** -0.1330*** 0.1944*** 0.1996***
(0.01525) (0.01441) (0.05453) (0.05633)

Firm FE YES NO YES NO
Disease FE YES NO YES NO
Firm-Disease FE NO YES NO YES

N of Firms 3,787 3,768 3,651 3,632
N of Observations 4,493,871 4,483,884 1,432,671 1,432,671
Mean of Dep Var: 0.0057 0.0057 0.0225 0.0225

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the firm-gene-disease level represent
all the potential GWAS opportunities considered by a firm. Std. err. clustered two-ways at the firm level. Sum of USPTO patent
applications: sum of USPTO patent applications filed in a given year that target a specific gene-disease combination. Has Gene
Knowledge (0/1): 0/1 = 1 if the firm has at least one publication about the specific gene before the GWAS associated it with a
disease. Columns 1 and 2 include only GWAS associations that fail subsequent replications, while columns 3 and 4 include only
GWAS associations that are later replicated.

40



Finding Diamonds in the Rough:

Data-Driven Opportunities and Pharmaceutical Innovation

Appendix

Matteo Tranchero
UC Berkeley-Haas

A Data-Driven Predictions and Domain Knowledge: A Simple Numerical Example 2

B Additional Details on GWASs 6

B.1 A Scientific Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

B.2 Case Study: The GWAS of Duerr et al. (2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

C Measurement Approach 9

C.1 Shortcomings of Patent-to-Paper Citations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

C.2 Using Entitymetrics to Measure Scientific Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

C.3 An Application of Entitymetrics in Pharmaceutical Innovation . . . . . . . . . . . . . . . . . . . . . . . 11

D SciBite/EBI Patent Data 14

D.1 Sample and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

D.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

D.3 Example: Denali Therapeutics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

E Other Data Sources 19

E.1 The NHGRI-EBI GWAS Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E.2 Open Targets Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

E.3 PubTator Central Publication Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

E.4 Cortellis Drug Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

F Additional Figures and Tables 29

1



A Data-Driven Predictions and Domain Knowledge: A Simple
Numerical Example

This appendix provides a numerical example to clarify the conceptual framework outlined in Section
2.3. To fix ideas, imagine that firms are risk-neutral and search for valuable innovations in a landscape
of m = 15 potential technological combinations, each costing C = 40. The distribution of values of
these projects is as follows: < 10, 10, 10, 10, 10, 20, 25, 30, 30, 30, 40, 50, 50, 80, 90, 100 >, such that
E(V ) = 39 < C = 40. This example captures the skewness of innovation returns, with a few projects
guaranteeing a high return (V > C) and the majority of them having little value (V < C). One can
assume that the firms can only know the expected value of the investments E(V ) = 39 but do not
know the specific value of any given project. Therefore, under these conditions, risk-neutral firms
will not invest since this will result in making an expected loss. Panel (a) of Figure A.1 presents the
example graphically: the 15 potential projects are represented as grey bars, each as high as its value
V . The red line represents the cost C, which lies above the average value of the opportunities E(V ).
The opportunities are not sorted by value since firms do not know the precise Vi of any opportunity i.

Figure A.1: Data-driven predictions provide a shortlist of potential opportunities of higher expected
value, thus encouraging firms to invest

(a) Average value of the m potential projects (b) Average value of the n data-driven predictions

Against this backdrop, one can envision data-driven predictions V̂ as providing a shortlist of n = 7 <

m = 15 combinations. Since the predictions are informative on average, firms know that the predicted
value of these shortlisted combinations is higher than the cost; in this example,E(V̂n) = 55 > C = 40.
The firms will have the incentive to start investing once they focus their attention on the subset of
data-driven predictions (Panel (b) of Figure A.1). However, firms know that the predictions V̂n are
noisy, i.e., imperfectly correlated with the true values Vn. The firm can learn the actual value Vi of
a generic technological combination i only after investing, which captures firms’ “online learning”
(Gavetti and Levinthal, 2000). Since the firms try to maximize their returns, it is rational for them to
rank data-driven predictions and start investing sequentially from those believed to be of higher value.

The key dimension of firm heterogeneity is their ability to assess the true value of data-driven
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opportunities. More precisely, each firm k observes a noisy prediction V̂i and comes up with its
firm-specific assessment V̂i,k = Vi + γi + ϵk, where γi ∼ N(0, η2i ) is the noise in the prediction itself
and ϵk ∼ N(0, σ2

k) is the noise in the firms’ own assessment. Borrowing the idea of Aguiar and
Waldfogel (2018), one can formalize domain knowledge as increasing the predictability of the returns
from observing a given data-driven prediction, i.e., shrinking the firm-specific σ2

k. Therefore, domain
knowledge allows the firm to come up with a ranking closer to the correct ranking based on the true
underlying value of the combinations. Figure A.2 exemplifies this idea using the parameters of the
example above. The figures make clear that firms with domain knowledge (panel (a)) will be able
to rank the data-driven predictions better, while the other firms will order them in a way that is less
reflective of the true underlying value of the combinations (panel (b)).

Figure A.2: Firms with domain knowledge are able to recognize the most promising opportunities
among data-driven predictions, hence ranking them higher in their order of investments

(a) Ranking by firms with domain knowledge (b) Ranking by firms without domain knowledge

Note: Both panels show the ranking (from left to right) of the same data-driven predictions made by firms that have
heterogeneous domain knowledge. Firms with domain knowledge have a better understanding of the true value Vi

underlying the data-driven prediction V̂i, hence their ranking of data-driven opportunities is closer to the ground truth
V1 > V2 > ... > Vi > ... > Vn.

Firms will then sequentially invest in each combination from those ranked highest until the marginal
combination i such that E(V̂n−i) < C. Consider first the firms with domain knowledge (k = 1),
whose ranking of data-driven predictions is depicted in Figure A.3. The firms will start investing in
the first project on the left, of value V1 = 100, thus making a profit π = V1 − C = 60. At that point,
the firms will know that the remaining combinations have E(V̂n−1) = 47.5 > C = 40,32 so they will
continue investing. This sequential process will continue until the opportunity i = 3, because, at that
point, the expected value of continuing to invest is below the cost (E(V̂n−3) = 28.8 < C = 40). In this
example, companies with domain knowledge will make three investments of value < 100, 80, 90 >,
hence achieving a profit of πk=1 = 150.

32Since I assumed that the firms knowE(V̂n) = 55, they will be able to compute the residualE(V̂n−1) after experimentally
learning the value of their first investment.
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Figure A.3: Firms will invest sequentially starting from the data-driven predictions ranked higher and
until the expected returns from the remaining ones are below the cost.

Now consider the firms without domain knowledge (k = 0), whose ranking is exemplified in Figure
A.4. Those firms will follow the same process. However, in this case, the ranking is noisier,
which means that the first three investments will be, on average, of lower value (in this example,
they will be < 100, 30, 90 >). At that point, the expected value from continuing to invest will be
E(V̂n−3) = 41.3 > C = 40, thus leading to further investments. The firms will stop at opportunity
j = 4 because E(V̂n−4) = 38.3 < C = 40. The final result will be four investments of value
< 100, 30, 90, 50 >, hence achieving a total profit of πk=0 = 110.

Figure A.4: Firms without domain knowledge will invest in more predictions because of their lower
ability to recognize opportunities

(a) Average value of residual choices is still above cost (b) Average value of residual choices is below cost

Note: Both panels show the ranking (from left to right) of the same data-driven predictions made by firms without domain
knowledge. Panel (a) shows that after investing in the opportunity i, the expected value of the residual opportunities is
still above cost. Panel (b) shows that the firm will invest until prediction j such that the expected value of the residual
opportunities is below cost.

This simple framework offers three implications amenable to empirical testing. First, the data-driven

4



predictions point, on average, to valuable opportunities (E(V̂n) = 55 > C = 40 > E(Vm) = 39).
This will lead all firms to increase their investments and, on average, introduce more innovations.
Second, firms without domain knowledge will pursue more data-driven predictions because they are
less capable of identifying the most promising ones. In practice, they will make more mistakes in
their early investments, hence having an incentive to continue searching. Third, those firms will make
both more commission (or type I) and more omission (or type II) errors, being more likely to select
low-value combinations that they mistakenly ranked high at the expense of actual opportunities. Figure
A.5 visually illustrates these implications. Compared to firms with domain knowledge, those without
domain knowledge should be less likely to find the best opportunities among data-driven predictions
despite investing quantitatively more.

Figure A.5: Firms without domain knowledge will invest in more data-driven predictions, while also
making more commission and omission errors.
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B Additional Details on GWASs
Genomics is the branch of biological sciences concerned with the study of genomes, i.e., the entire
collection of an organism’s genes. In turn, genes are sequences of DNA bases that encode the
“instructions” to synthesize gene products, most notably proteins. The normal functioning of a gene
can be altered by a mutation, potentially giving rise to severe health conditions. Knowing the roots
of genetic diseases has practical consequences in the design of pharmaceutical drugs (Nelson et al.,
2015): scientists can design drugs that bind to the malfunctioning gene (or its products) to produce a
desired therapeutic effect by leveraging their understanding of gene-disease relationships.

B.1 A Scientific Primer

Diseases caused by individual gene mutations are called Mendelian disorders. However, Mendelian
diseases are typically rare because they tend to be eliminated by evolutionary pressures due to their
severity. More common are complex or polygenic diseases that are not due to a single genetic factor but
rather by many genes. For complex diseases, any genetic mutation can increase the risk of presenting
the condition even without being neither necessary nor sufficient, which means that it is responsible for
only a tiny proportion of the heritability of the disease. Although complex disorders often cluster in
families, they do not have a predictable inheritance pattern because they are determined by convoluted
interactions between genes and environmental factors. This means that scientists need to search
through the ∼ 19, 000 protein-coding genes to find the mutations involved in each of the thousands of
polygenic diseases (Tranchero, 2023).

Over the years, researchers have come to the conclusion that common disorders are likely influenced
by genetic mutations also common in the population (Reich and Lander, 2001). Instead of looking for
individual genes with strong effects on phenotypes, the field has moved toward the study of common,
generic variants that individually have a small effect on the likelihood of having a disease (Bush and
Moore, 2012). But what precisely is a variant? At the most fundamental level, two genomes differ in
a specific genetic locus if they present an alternative single nucleotide (adenine, thymine, cytosine, or
guanine) in that location. Such mutation in one DNA basis is called single-nucleotide polymorphism
(SNP) when it appears in at least 1% of the population. One approach for associating SNPs with
a disease relies on the fact that a causative variant should be found more frequently in cases than
in control subjects. In practice, researchers look for statistical correlations between specific genetic
variants and diseases in large samples of unrelated people.

Building over this logic, genome-wide association studies (GWASs) are hypothesis-free methods for
identifying associations between genetic regions and traits (Visscher et al., 2017). Using genotyping
technologies on large samples, GWASs compare genetic differences between affected and unaffected
individuals. In a typical GWAS project, researchers obtain DNA from two groups of participants,
patients with the disease studied and healthy individuals with comparable demographics. Then,
selected SNPs on the chromosome are scanned using arrays that can genotype up to millions of SNPs
for each individual. Variants significantly more likely to appear in the affected patients could be
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biologically relevant for the disease and are thus involved with its etiology. Such SNPs might affect
gene expression and function, especially when located within a protein-coding gene. It is essential to
underscore that array-based genome-wide studies do not sequence the DNA base by base since they
only determine the presence or absence of a relatively small number of SNPs (usually < 0.1% of
the genome). Nevertheless, exploiting the fact that the co-occurrence of variants in proximal genetic
loci is not random (a phenomenon called linkage), researchers can use reference genomes (such as
the HapMap) to parsimoniously infer the characteristics of the whole genome from the much smaller
number of SNPs genotyped (Bush and Moore, 2012).

GWAS findings entail a substantial risk of false positives (Boyle et al., 2017; MacArthur, 2012). Even if
the association underlies a causal relationship, understanding the biological mechanisms through which
it affects human health requires additional study. Moreover, most associations explain a small fraction
of the variation in disease susceptibility, which means that the therapeutic benefit from intervening
in them could be quite limited (Goldstein, 2009). These limitations notwithstanding, GWASs have
proven extremely useful in uncovering drug targets that can assist in identifying compounds suitable
for drug repurposing (Reay and Cairns, 2021; Visscher et al., 2017). By pointing out new conditions
that might be addressed acting on a given target, GWASs permit to identify new uses for existing drugs
that are outside the scope of the original medical indication (Andriani and Cattani, 2022; Pushpakom
et al., 2019).

B.2 Case Study: The GWAS of Duerr et al. (2006)

In 2015, an estimated 3 million U.S. adults (around 1.3% of the population) reported being diagnosed
with chronic inflammation of the gastrointestinal tract, known as inflammatory bowel disease (IBD).
The two most frequent IBD conditions are Crohn’s disease and ulcerative colitis (Dahlhamer et al.,
2016). Given the prevalence and severity of these diseases, researchers have been studying Crohn’s
and related diseases intensively. According to the DisGeNET data, IBD was in the top 1% of the
diseases with the highest genetic research intensity in the pre-GWAS era (Tranchero, 2023). A few
genes, such as NOD2, had been identified by 2005, but without fully explaining the genetic risk for
the disease.

In December 2006, Duerr et al. (2006) published one of the very first GWASs. The study involved
567 European ancestry patients affected by IBD and 571 healthy controls. The GWAS identified
genetic mutations in the interleukin 23 receptor gene (IL23R) as significantly associated with Crohn’s
disease and ulcerative colitis. Before this finding, IL23R was among the least studied human genes.
However, many scientists followed up on the promising lead uncovered by the Duerr et al. paper,
often with the objective of elucidating the causal mechanisms (called “pathways”) through which
IL23R exerts its effects. It is now understood that the IL23R gene provides instructions for making a
protein called the interleukin 23 receptor, an essential constituent of antibodies that identify foreign
substances and defend the body against infections by promoting local inflammations. The IL-23
receptor interacts with a protein called IL-23, binding together like a lock and key (Bianchi and
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Rogge, 2019). When IL-23 binds to its receptor, it triggers chemical signals to develop and activate
Th17 cells, a specific type of lymphocytes that promote inflammation to fight foreign invaders such
as viruses. Malfunctioning IL23R genes might misdirect such inflammatory reactions toward human
tissues, giving rise to autoinflammatory diseases like Crohn’s.

The work of Duerr et al. (2006) uncovered the crucial role that malfunctioning of IL23R has in inducing
inflammations in the intestines. Furthermore, the discovery of IL23R’s role in IBD suggested that drugs
could be engineered to interfere with malfunctioning IL23R genes. This is indeed what ustekinumab, a
fully human monoclonal antibody, does by blocking the p40 subunit of IL23 and preventing its binding
with the IL23 receptor (Figure B.1). As of 2023, ustekinumab (Stelara, by Janssen Pharmaceuticals)
is a drug approved for treating chronic inflammatory diseases in several jurisdictions, including the
United States, Europe, and Australia. Several other drugs are being designed to target the IL23
receptor complex, including risankizumab (Skyrizi, by AbbVie), tildrakizumab, and guselkumab.
Interestingly, all these molecules have been repositioned as Crohn’s disease intervention from their
initial indication for psoriasis (Reay and Cairns, 2021). This highlights how uncovering new drug
targets through GWAS can enable the rapid repurposing of gene-specific molecules developed for
other diseases (Andriani and Cattani, 2022).

Figure B.1: GWAS findings on Crohn’s disease provided new opportunities for drug discovery

Note: The figure exemplifies how GWASs can guide drug development by finding new diseases that can be addressed
with existing molecules. Once Duerr et al. (2006) located a new variant in IL23R that disrupts its function, monoclonal
antibodies that target the interleukin-23 receptor pathway were repositioned as Crohn’s disease interventions from their
original indication for psoriasis. The image is taken from Reay and Cairns (2021).
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C Measurement Approach

C.1 Shortcomings of Patent-to-Paper Citations

Measuring the technological impact of a scientific project usually involves counting the patent citations
received by the publications where its output is codified (Arora et al., 2021; Azoulay et al., 2019;
Fleming et al., 2019). Methodological studies showed that patent-to-paper citations are a good way to
proxy knowledge flows from science to technology (Narin et al., 1997; Roach and Cohen, 2013). It is
not an exaggeration to say that almost all existing empirical studies use non-patent literature citation
counts to measure the innovation impact of science.33 The recent diffusion of open access databases of
patent-to-paper citations have further increased the appeal of this approach (Bryan et al., 2020; Marx
and Fuegi, 2020). Nonetheless, this measurement approach suffers from two shortcomings.

First, relying on explicit references to science usually provides a downward biased measure of impact
(Myers and Lanahan, 2022). Direct citations, for instance, would not capture foundational intellectual
influences that become common knowledge in a field,34 nor knowledge flowing through more compli-
cated citation patterns (e.g., a patent citing a publication that cites the focal paper of interest). These
examples fall under what Roach and Cohen (2013) define as “errors of omission.” Such underestimate
is possibly magnified for basic research with spillovers in fields very different from the one where the
idea originated (Azoulay et al., 2019) and through unpredictable channels (Cohen et al., 2002).

Second, and similarly to what happens with academic papers, non-patent literature citations can be
made for various reasons (Teplitskiy et al., 2022). Up to half of the citations are possibly devoted
to irrelevant prior art (Jaffe et al., 2000), likely for strategic reasons (Kuhn et al., 2020; Lampe,
2012). This is what Roach and Cohen (2013) define as “errors of commission,” namely citations not
corresponding to knowledge relevant to the invention. But even if the reference captures an actual
knowledge flow, it is hard to know what part of the study the patent builds on. Academic papers often
make multiple contributions; the citation might refer to any of those. Assessing the value of individual
contributions made in a paper is impossible from sheer citation counts.

C.2 Using Entitymetrics to Measure Scientific Impact

In this paper, I develop a new measurement approach based on the notion of knowledge entity (Ding
et al., 2013). I consider any individual carrier of knowledge as an entity, be it embodied into an artifact
(e.g., a piece of computer hardware) or a more abstract unit of domain knowledge (e.g., biological
entities, such as genes and diseases). Each publication or patent can be characterized by the knowledge
entities it studies and recombines (Fleming, 2001). By taking this perspective, one can summarize
written documents by compiling a list of their knowledge entities. I propose to assess the technological

33Advances in natural language processing are enabling to sidestep citation trails by capturing text similarity between
documents (Arts et al., 2018; Kaplan and Vakili, 2015; Younge and Kuhn, 2019). However, with very few exceptions
(Myers and Lanahan, 2022), these methods have only been used to measure the similarity between patent specifications.

34One can hardly find citations to Keynes’ General Theory even in the papers of so-called New-Keynesian economists.
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impact of a paper by quantifying the change in activity experienced by the knowledge entities “treated”
by it. The basic idea is that impactful projects generate innovation opportunities involving the entities
recombined. The increase in patents including such entity combinations relative to similar control
combinations is a measure of impact that has the advantage of also capturing patents that do not
directly cite the focal paper (Kumar Panda and Tranchero, 2023).35

More in detail, my approach combines machine learning with causal inference in three steps. First,
one needs to extract knowledge entities from the relevant documents – in this case, papers and patents.
This can be done using automated machine learning procedures, such as state-of-the-art Bidirectional
Encoder Representations from Transformers (or BERT). BERT can be tailored to specific domains,
such as the life sciences, to increase accuracy and contextual stability (Xu et al., 2020). After extracting
accurate knowledge entities using BERT, one can normalize and assign a unique ID to each. The result
is that text documents will be characterized by a vector of their knowledge entities. This approach is
more flexible than relying on dictionary-based entity extraction methods.

Second, the union of all knowledge entities extracted from the relevant document corpus can be used
to trace an empirical knowledge landscape (Rzhetsky et al., 2015). This constitutes the “ground truth,”
that is, the space of entities over which researchers and firms carry out their research activities. In
some instances, this landscape is known ex ante (e.g., the ∼ 19, 000 genes constituting the human
genome), while in other cases, it can be backed out from the entity extraction task (e.g., the landscape
of research topics described by Boyack et al. 2020). The advantage of studying research as happening
on a landscape is that citations are not needed to track knowledge evolution (Ding et al., 2013). Instead,
one can simply measure the change in follow-on work relating to the entities themselves before and
after the project of interest is completed.

Finally, one can quantify the impact of a research project using a difference-in-differences framework
with staggered adoption at the level of each entity combination. Said otherwise, combination-level
regressions allow assessing the attention change the entity combination < i, j > received after being
“treated” by the article m of interest. The basic specification is at the level of individual combination
< i, j > and time t and takes the form of the following equation:

Yi,j,t = α+ βPostt ×Articlem + γi,j + δi,t + ωj,t + ϵi,j,t (C.1)

Where Yi,j,t is any technological impact metric of interest about the treated entities (e.g., patents,
clinical trials, or other follow-on outcomes), Articlem equals one for the combinations treated and
zero for the control ones, Postt is a binary variable that takes value one only after the project of
interest is completed, γi,j are combination fixed effects, while δi,t and ωj,t are entity-specific time
trends. Combination fixed effects consider the potential of different combinations, while the entity
time trends avoid confounding from heterogeneous changes in attention to individual entities.

The coefficient of interest, β, captures the marginal impact of the project completion on the treated

35Similarly to my approach, Iaria et al. (2018) trace the diffusion of frontier knowledge measuring the occurrence of new
scientific concepts in patent texts. Suh (2023) extracts the chemical compounds mentioned in the body of patent texts to
recognize innovations that rely more on technologies where the Soviet Union had a scientific lead.
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entities. Under the assumption of parallel trends in inventive activities between treated and non-
treated entities, this procedure provides an estimate of project impact over time that does not depend
on patent-to-paper citations. In particular, it solves the measurement issues highlighted in the previous
section. First, by capturing the mention of entities directly in the text description of the technological
application, this approach is well suited to objectively measure the impact of basic research findings
that might not be cited in downstream applications. Second, tracking the reuse of entity combinations
permits distinguishing different contributions made in the same article, offering a granularity that
citations do not have.

C.3 An Application of Entitymetrics in Pharmaceutical Innovation

The bio-medical sector offers an ideal setting to demonstrate the advantages of entitymetrics (Xu et al.,
2020). Pharmaceutical innovation heavily depends on science (Cohen et al., 2002), and knowledge
entities are well-defined and have clear meaning (e.g., genes and diseases). I leverage data from
European Bioinformatics Institute to measure the gene-disease pairs targeted by each GWAS (2005-
2019) and USPTO patent application (2001-2019). The entities from patent texts are extracted using
TERMite, the proprietary named entity recognition software developed by SciBite.

Example 1: Undermeasurement of Basic Research Influences: The GWAS of Duerr et al. (2006)
was the first to implicate the IL23R gene in the etiology of inflammatory bowel disease (IBD). This
finding has proved incredibly impactful both on scientific research and pharmaceutical innovation.
Duerr et al. (2006) received over 3,600 citations on Google Scholar (as of June 2022) and led to an
improved theoretical understanding of how IL23R is involved in IBD (Bianchi and Rogge, 2019). On
the therapeutic front, several drug molecules are now available to treat IBD by modulating the IL-23
signaling pathways, including ustekinumab and risankizumab (Reay and Cairns, 2021). Therefore,
this offers a perfect case study to compare the ability of patent citations and entitymetrics to capture
the considerable technological impact of this paper.

Figure C.1 shows the time series of USPTO patent applications targeting the IL23R-IBD pathway or
citing the GWAS by Duerr et al. (2006), respectively. A few things are interesting to note. First, some
firms were already exploring the IL23R-IBD nexus before the finding became known in the broader
scientific community (Brusoni et al., 2001). Those firms are then the quickest to react, applying for
patents that were probably already in the making and thus not citing Duerr et al. (2006), but that
found a crucial validation in it (Kao, 2023). Second, it appears that just looking at patent-to-paper
citations would lead to a substantial underestimate of impact. Only 46 patent applications cite Duerr
et al. (2006), compared with the 88 applications that exploit its finding. Interestingly, the gap between
the two measurements reduces to half among patents filed by universities and research institutions,
suggesting that most undercount stems from firms’ citation practices.

Direct patent-to-paper citations cannot account for citations to downstream science enabled by Duerr
et al. (2006). For instance, patents might cite subsequent studies that experimentally validated the
IL23R-IBD association (Ahmadpoor and Jones, 2017). Figure C.2 shows a few claims of the US
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Figure C.1: Count of USPTO patent applications that directly cite Duerr et al. (2006) or that target
the IL23R-IBD combinations, regardless of whether they cite Duerr et al. (2006)

Note: Data on patent citations are from Google Patents. The vertical line marks the publication of Duerr et al. (2006).

2016/0333091 A1 patent application by Boehringer Ingelheim. The patent builds on knowledge
of IL23R’s role in IBD without acknowledging the GWAS by Duerr and colleagues, instead citing
subsequent papers that explain the mechanisms behind the IL23R-IBD correlation (Beyer et al., 2008).
The entity-based approach seems better equipped to capture the impact of basic advances triggering
extensive follow-on research.

Figure C.2: Claims 28, 29, and 30 of patent application US 2016/0333091 A1

Note: This figure shows selected claims of the patent application titled “Anti-IL-23 Antibodies” filed by Boehringer
Ingelheim. The patent does not cite the study of Duerr et al. (2006) even if it clearly builds on its finding.

Example 2: Multiple Findings in the Same Paper: Scientific articles often make more than one
contribution. For instance, the GWAS of Easton et al. (2007) reported four new genes as correlated
with breast cancer (Panel A of Figure C.3). What was the individual impact of these four gene-disease
combinations on pharmaceutical innovation? Simply counting how many patents cite this paper would
not answer this question. Aveo Pharmaceuticals’ patent US 2011/0305687 A1, titled “Anti-FGFR2
antibodies,” is a good case in point. This patent cites Easton et al. (2007), and from the title alone, it
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is clear that it builds on only one of its four findings. Unfortunately, this information is impossible to
gather from citation patterns alone.

Figure C.3: Application to measuring the impact of multiple discoveries in the same paper

(a) Abstract of the GWAS by Easton et al. (2007)

(b) USPTO patent applications after Easton et al. (2007)

Note: The top panel shows the abstract of the GWAS by Easton et al. (2007). The bottom panel shows USPTO patent
applications that target the four findings of the GWAS by Easton et al. (2007). The vertical line marks the publication of
Easton et al. (2007), showing substantial heterogeneity in the impact of individual findings.

My novel measurement strategy can bypass this limitation by extracting each recombination introduced
by a given article and then relating it to patenting dynamics on the recombination itself. Figure C.3
shows that the GWAS by Easton et al. (2007) triggered substantial patent applications only on the
FGFR2-breast cancer combination. Patenting on this gene-disease combination tripled, with almost no
impact on the other combinations. Relying on patent-to-paper citations would completely obscure the
heterogeneous impact of the GWAS by Easton et al. (2007). This is all the more important since some
of these associations might be false positives. Instead, text-extracted real-world entities are especially
suited to measure the impact of basic research with cumulative impact across disparate domains.
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D SciBite/EBI Patent Data
This appendix describes in detail the data on the genes and diseases targeted by USPTO patent
applications (2001-2019).

D.1 Sample and Validation

The primary source for the data used in the paper is a proprietary database from the European
Bioinformatics Institute (EBI). The data have been compiled using TERMite (TERM identification,
tagging & extraction), a named entity recognition software developed by the Elsevier-owned startup
SciBite. TERMite scans and semantically annotates raw text with entities from over 50 biopharma
and biomedical topics. The entities are drawn from VOCabs, a manually curated vocabulary with
over 20 million synonyms specifically tuned for named entity recognition text analytics. For instance,
this permits recognizing that SEPT1 is the symbol for the SEPTIN1 gene, not a date. Importantly,
TERMite has built-in relevance detection, distinguishing between terms that are casual mentions and
those that constitute the critical bio-entities of a document.

The data include all the protein-coding genes and diseases extracted from complete patent texts.
Genes are matched to their unique NCBI IDs, while diseases are mapped into MeSH Unique IDs.
Figure D.1 shows how the TERMite software works. The figure shows USPTO patent application US
2011/0301182 A1, a patent that was granted on September 30, 2014 to Boehringer Ingelheim. This
patent is listed in the FDA’s Approved Drug Products with Therapeutic Equivalence Evaluations (also
known as Orange Book) as the intellectual property behind Tradjenta, the brand name for Linagliptin.
Tradjenta is a medication used to treat type 2 diabetes by acting as a DPP-4 inhibitor, i.e., by altering
the function of the gene DPP4 which plays a significant role in glucose metabolism. Figure D.1
shows how the entity-based approach correctly captures that this patent targets the DPP4-diabetes
combination.

Figure D.1: Example of SciBite’s entity recognition algorithm used to extract genes and diseases
targeted by each USPTO patent application

Note: This figure shows an example of how SciBite’s entity recognition algorithm (called TERMite) extracts genes and
diseases targeted by the USPTO patent application US 2011/0301182 A1.

I carry out a manual validation to assess the performance of TERMite in terms of recall and precision,
following the procedure of Marx and Fuegi (2020). Recall measures how many actual bio-entities
of a patent the algorithm found. This is equivalent to 1 minus the percentage of false negatives, i.e.,
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entities targeted by a patent that the software failed to find. To assess this metric, I sampled 100
patent applications, obtained their full specification from Google Patents, and randomly extracted one
gene and one disease they mentioned. Then I assessed whether the same entities were listed in my
data for that specific patent, finding that 91% of genes and 92% of diseases were correctly captured.
Symmetrically, precision is given by the share of reported bio-entities that are correct. This metric
is computed as 1 minus the percentage of false positives, i.e., entities mistakenly extracted from the
patent. I evaluated precision by extracting one gene and one disease for 100 patents in my data and
then manually checking whether the entity in question was present in the patent specification. Overall,
95% of genes and 97% of diseases were true positives. Taken together, the F1 score is equal to 92.96
in the case of genes and 94.43 in the case of diseases, proving the high reliability of my data.

D.2 Descriptive Statistics

My sample includes 148,232 USPTO patent applications published from 2001 to 2019 inclusive.
Of these, 73,255 are eventually granted as of summer 2021. All my primary analyses rely on the
entire sample of applications, but I also present descriptive statistics for the subset of granted patents
for comparison. Table D.1 presents the main descriptive statistics. Each patent application targets,
on average, 6.3 genes and 12.3 diseases; this number is only slightly smaller for granted patents.36
However, the sample shows a large variance, with a few patents listing hundreds of genes and diseases
as targets. This is probably reflective of strategic disclosure behaviors and offers an exciting avenue
for future research on the conditions under which patent text can or cannot be relied upon to gauge
a patent’s technological content. Finally, the average patent covers 188 gene-disease pairs, mostly
due to a few outliers since the median patent is focused on a much smaller set of 13 gene-disease
combinations.

Table D.1: Descriptive statistics at the patent level.

USPTO patent applications USPTO granted patents

mean median st d min max N mean median st d min max N

Genes per patent 6.285 2 31.1786 1 4060 148,232 5.625 2 31.3932 1 4,060 73,255
Diseases per patent 12.257 5 22.5936 1 911 148,232 12.095 5 20.4855 1 853 73,255
Gene-disease pairs per patent 188.416 13 3,671.136 1 318,560 148,232 165.865 12 3645.6 1 289,212 73,255
Year of patent publication 2010.704 2011 5.0519 2001 2019 148,232 2011.062 2011 5.0451 2001 2019 73,255
Note: This table presents descriptive statistics at the level of individual patent applications. The left part of the table presents descriptives considering all
patent applications, while the right panel presents descriptives considering only applications that eventually result in a granted patent as of 2021. Genes
per patent: count of genes targeted by the patent; Diseases per patent: count of diseases targeted by the patent; Gene-disease pairs per patent: count of
gene-disease pairs targeted by the patent; Year of patent publication: year when the patent specification was published.

The average number of diseases each patent targets is roughly constant over my sample period (Figure
D.2), while there seems to be a be a slightly upward trend in the number of genes targeted. Patents
published in the year 2001 seem to reference an abnormally low number of bio-entities, possibly
because of idiosyncrasies of that specific year (which is the first when patent applications started to
be published and it corresponded to the release of the first draft of the human genome). Together,

36This is consistent with evidence showing that patent examiners tend to restrict the scope of patent applications during
the granting process (Marco et al., 2019).
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the two graphs help rule out structural breaks in disclosure practices that could potentially bias my
measurement approach.

Figure D.2: The average number of genes and diseases targeted by each USPTO patent application is
relatively constant over time

(a) Average number of genes targeted per patent (b) Average number of diseases targeted per patent

Note: Panel (a) shows the average number of genes targeted by each USPTO patent application per year. Panel (b) shows
the average number of diseases (MeSH Unique IDs at level 4) by each USPTO patent application per year.

Table D.2 shows the descriptive statistics at the firm level. On average, firms’ patent portfolio targets
around 64 genes and 41 diseases, but there is significant variation. Some firms span up to thousands
of genes in their R&D efforts, while the median firm explored only 19 genes. The dispersion in the
number of diseases is generally smaller. Interestingly, the table shows that focusing only on granted
patents would lead to missing much of the firms’ exploration in genetic space. This validates the
choice of looking at patent applications to capture the earliest stages of pharmaceutical innovation and
suggests that firms’ competencies are much more comprehensive than what traditional research can
capture (Brusoni et al., 2001). Firms are active on 1,437 gene-disease pairs on average, but the median
firm explored only 162 pairs.

Table D.2: Descriptive statistics at the firm level.

USPTO patent applications USPTO granted patents

mean median st d min max N mean median st d min max N

Genes per firm 64.285 19 195.922 1 5,467 4,117 37.637 11 130.255 1 4,579 3,866
Diseases per firm 41.362 27 46.173 1 338 4,117 31.530 17 40.546 1 305 3,866
Gene-disease pairs per firm 1,436.791 162 8,680.241 1 239,160 4,117 842.248 76 5,821.625 1 166,437 3,866
Note: This table presents descriptive statistics at the level of individual firms. The left part of the table presents descriptives considering all patent
applications, while the right panel presents descriptives considering only applications that eventually result in a granted patent as of 2021. Genes per
firm: count of genes targeted by a firm in its patents; Diseases per firm: count of diseases targeted by a firm in its patents; Gene-disease pairs per firm:
count of gene-disease pairs targeted by a firm in its patents.

Finally, I provide some descriptive evidence of how the bio-entities recombined by a patent relate to
common empirical proxies of its value. Simple OLS regressions reveal that the number of diseases is
associated with patents of higher economic value (Table D.3). Innovations targeting more diseases have
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higher market value and larger patent family sizes, indicating that the number of potential applications
for a drug is a predictor of its economic value. Instead, the number of genetic targets of a patent
seems to be associated with higher technological impact, as proxied by the number of forward patent
citations received. These patents are also more likely to end up in litigation, confirming the intuition
that they might cover a larger swath of the technological space and block other applications.

Table D.3: USPTO patent applications targeting multiple diseases have a higher market value, while
USPTO patent applications targeting multiple genes have a higher technological impact.

Dependent Variable: Patent family size Litigated patent (0/1) Patent citations Market value

Genes per patent 0.0004 0.0004* 0.04659*** -0.0274
(0.00222) (0.00017) (0.01253) (0.03072)

Diseases per patent 0.0329** 0.0002 0.0076 0.1312*
(0.01043) (0.00026) (0.02196) (0.06300)

Year of application FE YES YES YES YES YES YES YES YES
N 148,226 148,226 148,226 148,226 148,226 148,226 30,019 30,019
Mean of Dep Var: 10.7969 10.7969 0.4366 0.4366 21.0813 21.0813 28.8594 28.8594
Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the patent application level.
Std. err. clustered at the assignee level. Genes per patent: count of genes targeted by a patent application; Diseases per
patent: count of diseases targeted by a patent application; Patent family size: number of patent applications in the same
patent family; Litigated patent (0/1): 0/1 = 1 if the USPTO patent application is involved in a litigation. Patent citations:
number of forward patent citations received by the USPTO patent application up to seven years after its publication; Market
value: estimate of the market value (in constant USD) of the patent using data from Kogan et al. (2017); note that this
measure is available only for applications that are eventually granted, hence the smaller sample size.

D.3 Example: Denali Therapeutics

In 2015, three top researchers left Genentech to start a new company: Denali Therapeutics. Aptly
named after the tallest mountain in North America, Denali focuses on treating and curing neurode-
generative diseases like Alzheimer’s, amyotrophic lateral sclerosis, and Parkinson’s. Based in San
Francisco, the company has raised over $350 million in venture capital and $250 million from its IPO
in 2017. On its website, Denali lists ten compounds at different stages of clinical development as
of summer 2022. Some of them are being developed together with large pharmaceutical companies,
including Biogen, Sanofi, and Takeda Pharmaceuticals.

Advances in the genetics, pathology, and cell biology underlying chronic neurodegenerative disease
have identified new pathways that trigger neurodegeneration. Denali Therapeutics was founded based
on the idea that some such genes, dubbed “degenogenes,” could constitute a viable therapeutic avenue
to tackle the most common neurodegenerative disorders. Degenogenes are genes that, when mutated,
have a causative role in neurodegenerative disease. The focus of drug discovery activities on a
handful of genetic targets constitutes not only the scientific foundation of this company but also its
key competitive hypothesis for drug development.

In its IPO filings, Denali explicitly listed the key genetic targets that the company decided to focus
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on.37 This offers an opportunity to test the reliability of the SciBite data, that include ten patent
applications by Denali Therapeutics as of 2019. Two patterns stand out. First, nine out of ten patents
are indeed tagged with Alzheimer’s and Parkinson’s diseases, showing that the data accurately capture
the markets targeted by Denali.38 Second, 86.3% of the gene-disease combinations mentioned in its
patents include the two key genes listed in the SEC files: RIPK1 and LRRK2. The first is a gene with
an essential role in driving cell death and inflammation, and Denali was the first company to establish
the safety of inhibiting RIPK1 kinase activity in humans with a Phase 1 clinical trial (Mifflin et al.,
2020); the latter is a gene whose mutations increase the risk of developing Parkinson’s disease, and
Denali is leading the way in showing how it can be used for drug targeting (Kingwell, 2022). This
example shows the potential of using bio-entities to capture a company’s technological portfolio.

37The list of genetic pathways and genes targets is at page 3 of the following link: https://www.sec.gov/Archives/Denali
38Instead, the tenth patent generically addresses lysosomal storage disorders. As noted in the IPO filings of Denali, the

lysosomal system is associated with several neurodegenerative diseases, including Parkinson’s.
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E Other Data Sources
The present appendix provides additional details and descriptive statistics about the other data used in
this study.

E.1 The NHGRI-EBI GWAS Catalog

Information about genome-wide association studies is taken from the GWAS Catalog, a publicly
available list of all published GWASs and association results (MacArthur et al., 2017). The Catalog
includes all eligible GWAS studies since the first published in 2005, with details about associations
with a high statistical significance (p-value < 1.0 × 10−5) (Marigorta et al., 2018). Compiling this
resource requires manual curation of a large body of diverse and unstructured data from the literature,
a task carried out by scientists at the European Bioinformatics Institute (EBI) with the support of
the National Human Genome Research Institute Home (NHGRI). Catalog data are routinely used
by biologists, bioinformaticians, and researchers aiming to translate scientific findings to medical
applications and establish targets for novel therapies.

Table E.1: Descriptive statistics of GWAS papers that introduce a gene-disease association involving
protein-coding genes

mean median st d min max N

Genes 7.848 3 25.849 1 522 1,259
Diseases 2.053 2 1.335 1 12 1,259
New gene-disease associations 14.269 4 36.276 1 522 1,259
Sample size 104,582.80 11,348 224,424.40 41 1,474,097 1,259
Replication sample (0/1) 0.639 1 0.48 0 1 1,259
Top journal (0/1) 0.314 0 0.464 0 1 1,259
High status PI (0/1) 0.261 0 0.439 0 1 1,259
Co-author industry (0/1) 0.218 0 0.413 0 1 1,259
Scientific citations 138.258 51 311.392 0 6,244 1,259
Cited by clinical trials (0/1) 0.57 1 0.495 0 1 1,259
Patent citations 1.221 0 7.459 0 226 1,259
Year 2015.823 2017 2.979 2005 2019 1,259

Note: This table presents descriptive statistics of GWASs that introduce new gene-disease associations involving protein-coding genes. Genes:
number of protein-coding genes associated with a disease in the GWAS; Diseases: number of diseases studied in the GWAS; New gene-disease
associations: number of new gene-disease associations introduced by the GWAS; Sample size: total number of subjects involved in the GWAS;
Replication sample (0/1): 0/1 = 1 for associations reported in GWASs that include also a replication analysis of their result; Top journal (0/1):
0/1 = 1 for associations published in the 15 most prestigious genetics journals or the top 3 generalits scientific journals (Science, Nature, PNAS).
High status PI (0/1): 0/1 = 1 for GWASs whose last author is affiliated with one of the 20 most prestigious universities according to the QS World
University Rankings for the biological sciences; Co-author industry (0/1): 0/1 = 1 for GWASs with at least one industry co-author; Scientific
citations: count of scientific citations received by the GWAS (data from NIH ICite); Cited by clinical trials (0/1): 0/1 = 1 if the GWAS has
received at least one citation from a clinical trial (data from NIH ICite); Patent citations: count of USPTO patent citations received by the GWAS
(data for granted patents from Marx and Fuegi 2020); Year: year of publication of the GWAS.

Each entry of the Catalog includes details about the PubMed ID of the GWAS paper and the list of
associated genes and diseases. Genes are identified by their NCBI IDs, while diseases are mapped
into the Experimental Factor Ontology (EFO). I use the crosswalk available on the EFO website
to map each disease into the corresponding MeSH Unique IDs. Note that the National Library of
Medicine’s MeSH semantic keyword tree is a hierarchical tree with 13 levels of increasing specificity.
For this study, I map each GWAS to the fourth level of the MeSH tree. If a more specific disease was
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Figure E.1: Publication of GWASs and introduction of new gene-disease associations by year, 2000-
2019

(a) Yearly GWASs introducing new gene-disease associations (b) New gene-disease associations introduced by GWAS

Note: Panel (a) shows the number of GWASs introducing at least one novel gene-disease association that involves a
protein-coding gene, both by year and cumulatively over the sample period (2000-2019). Panel (b) shows the number
of new gene-disease associations involving a protein-coding gene, both by year and cumulatively over the sample period
(2000-2019).

matched (i.e., at level 5 or above), I assigned it to its parent branches up to level 4. Vice versa, if the
disease matched was coarser (i.e., at level 3 or below), I assigned the finding as pertaining to all its
descending level 4 branches. This procedure permits harmonizing GWASs as uncovering gene-disease
associations in a landscape of NCBI IDs (unique genes) and level-4 MeSH IDs (unique diseases).

Table E.1 presents the descriptive statistics of the 1,259 GWAS papers that introduce new gene-
disease associations (i.e., what constitutes the “treatment” in the primary analysis of the paper). The
average GWAS targets two diseases and uncovers 14 associations. However, considerable variability
exists, with a few GWASs recombining up to 522 genes. Around 64% of the GWASs include a
replication sample within the same paper, which is considered a best practice to avoid reporting
spurious results. Around a quarter of studies are carried out by principal investigators affiliated with
high-status institutions, and little over a fifth includes an industry co-author. The average GWAS
receives 138.3 scientific citations, 1.2 patent citations and has a 57% chance of being cited as the
scientific background for a clinical trial. Figure E.1 shows the time series of GWAS publications and
the arrival of new gene-disease associations. While the number of studies stabilized around 2010, the
number of associations reported keeps growing, possibly due to increased sample sizes that allow for
more statistically powered analyses.

E.2 Open Targets Score

The Open Targets Platform is a public-private partnership that aims to provide evidence for identi-
fying and prioritizing drug targets, one of the fundamental challenges in developing new medicines
(Ochoa et al., 2023). Open Targets collects all the available evidence on the strength of gene-disease
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associations and summarizes it in an open-source synthetic score (Figure E.2 shows an example). In
order to contextualize the relative importance of different pieces of evidence, Open Targets weights
documentation on a gene-disease pair according to a scoring framework for each data source. All
evidence is then mapped to the genetic target (using Ensembl gene identifiers, which I merge to NCBI
IDs) and disease (using the EFO, which I merge to level-4 MeSH IDs). The Open Targets team also
makes sure to minimize the presence of duplicates within the same data source. For this paper, I focus
only on the Score aggregating direct evidence on the gene-disease relationship.39

Figure E.2: Example of Open Targets Platform’s synthetic score for the genes associated with Crohn’s
disease

Note: This figure shows an example of how the Open Targets Platform the available evidence on the strength of genetic
associations with Crohn’s disease and summarizes them in an open-source synthetic score.

The Score is available for 594,353 gene-disease pairs (8% of my sample), spanning 17,437 genes and
366 diseases. However, one must take into consideration some potential limitations. Open Targets
Scores partially reflect data availability about a given gene-disease pair. This means that under-studied
genes or diseases are unlikely to produce high-scoring associations simply due to the lack of available
evidence. Vice versa, not all pairs with available evidence can be considered legitimate genetic targets.
These limitations explain why I use the replicability of a GWAS finding to find false positives and
not the value of the Open Target Score, which could confound the interest in the association with its
actual underlying therapeutic value. These limitations notwithstanding, this Score provides a valuable
measure to rank the relative strength of genetic targets within a given disease.

Table E.2 validates that targeting gene-disease pairs with a higher Open Target Score has a technolog-
ically and economically significant effect on outcomes. Across the board, there is a strong correlation
between patent applications that include gene-disease combinations with higher Open Target Scores
and traditional metrics of patent value. In particular, the highest value reached by the Open Target
Score of the combinations in a patent application correlates with the number of forward patent citations
when including assignee fixed effects. Open Target Scores are also predictive of higher economic

39The Open Targets Platform also provides scores that consider indirect evidence using the properties of the EFO disease
ontology. However, this evidence is considered less robust (Ochoa et al., 2023).
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Table E.2: Patent applications involving gene-disease pairs with higher Open Target Scores are of
higher value

Dependent Variable: Patent citations Patent family size Market value

Max(OT Score) 4.6822 7.7646* 3.8489*** 1.6012*** 14.7768** 4.0955*
(3.4223) (3.10934) (0.36592) (0.31473) (4.7530) (2.0507)

Patent year FE YES YES YES YES YES YES
Firm FE NO YES NO YES NO YES
N 137,614 137,614 137,614 137,614 27,213 27,213
Mean of Dep Var: 26.063 26.063 11.081 11.081 30.365 30.365

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the patent application level. Std. err. clustered
at the patent assignee level. Max(OT Score): maximum value of the Open Target score reached by any gene-disease pair targeted in a
patent application; Patent citations: number of forward patent citations received by the USPTO patent application up to seven years after
its publication; Patent family size: number of patent applications in the same patent family; Market value: estimate of the market value (in
constant USD) of the patent using data from Kogan et al. (2017); note that this measure is available only for applications that are eventually
granted, hence the smaller sample size.

value of the patents, as captured by the dimension of the patent family and the monetary value of
granted patents (using data from Kogan et al. 2017).

E.3 PubTator Central Publication Data

Data on the genes and diseases studied in each scientific publication are taken from PubTator Central,
a web-based tool that automatically annotates biomedical concepts in PubMed abstracts and text (Wei
et al., 2019). Articles are processed through concept taggers and disambiguation dictionaries to
resolve annotation conflicts. The results of this process are publicly available online and include over
29 million abstracts and 3 million full-text documents. The entities extracted are matched to unique
identifiers from NCBI and MeSH. The F1 score for the entity extraction pipeline is 86.70%

I obtain information on the authors’ affiliations from Dimensions, a data product by Digital Science
(Herzog et al., 2020). Compared to PubMed, whose recording of authors’ affiliations is mainly limited
to the corresponding author for papers before 2010, Dimensions has much broader coverage. I use
these data to match each patenting firm in my sample to their publication portfolios using fuzzy string
matching on the firm names. Then, thanks to PubTator Central, I record all the genes and diseases
studied by the firms. Finally, I use NIH’s iCite data to collect additional bibliometric information,
including the translational focus of each article and its impact on clinical development.

Table E.3 shows the descriptive statistics of the resulting dataset. 3,346 of the 4,117 firms in my sample
(81.3%) have at least one publication. Each publishing firm has on average 59 papers about 177 genes
and 109 diseases. The median firm has performed basic research on 923 gene-disease pairs. A large
fraction of publications falls within the scope of what Azoulay et al. (2021) define “translational
research.”40 Interestingly, Figure E.3 shows that firms are more likely to carry out research involving

40Translational articles are defined as disease-oriented studies that try to apply bench science findings to practical therapies,
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Table E.3: Descriptive statistics of firms’ publication portfolios

mean median st d min max N

Publications 59.170 9 390.944 1 10,656 3,346
Genes 176.563 52 568.922 1 12,267 3,346
Diseases 109.239 65 156.608 1 1,876 3,346
Gene-disease pairs 5,507.258 923 27,322.490 1 545,193 3,346
Biological pathway 0.381 0 2.496 0 58 3,346
Translational (cell) 12.48 2 70.712 0 1,820 3,346
Translational (animal) 11.575 1 11.575 0 1,673 3,346
Translational (human) 23.558 2 202.75 0 7,511 3,346
Year 2012.97 2014 4.672 1985 2019 3,346

This table presents descriptive statistics of firms’ publication portfolios (conditional on having at least one publication). Publications:
average number of firm publications; Genes: average number of genes on which the firm has published; Diseases: average number
of diseases on which the firm has published; Gene-disease pairs: average number of gene-disease pairs on which the firm has
published; Biological pathway: average number of firm publications that include a biological pathway; Translational (cell): average
number of firm translational publications (according to the definition of Azoulay et al. 2021) that are cellular biology-oriented;
Translational (animal): average number of firm translational publications (according to the definition of Azoulay et al. 2021) that
involve animal organisms; Translational (human): average number of firm translational publications (according to the definition of
Azoulay et al. 2021) that involve human subjects; Year: average year of the publications.

animal model organisms than university researchers. The opposite is true when it comes to research
including human subjects, possibly because of the higher costs and risks involved or because clinical
trials tend to be outsourced to university hospitals (Azoulay and Fishman, 2020). Firms’ publications
are also disproportionally likely to be cited by clinical trials, confirming the applied nature of corporate
research relative to academic science.

but without being clinical trials.

Figure E.3: Articles by firms are more likely to use animal organisms and to be relevant for clinical
trials than otherwise comparable articles by university researchers.

Note: This figure shows the OLS coefficient from linear probability models that regress the type of publication on a dummy
equal to 1 if the publication includes at least one author from a company in my sample. All regressions control for year
and journal dummies. Standard errors are clustered at the journal level.
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Table E.4: Patent applications are of higher value when they target gene-disease pairs involving genes
where the firm has published before

Dependent Variable: Patent citations Patent family size Market value

Has gene knowledge (share) -0.1496 8.0016* 4.0945*** 0.9079*** 24.7607** 0.488
(3.1426) (3.2385) (0.6110) (0.2152) (7.8265) (1.0171)

Patent year FE YES YES YES YES YES YES
Firm FE NO YES NO YES NO YES
N 134,459 134,330 134,459 134,330 26,498 26,329
Mean of Dep Var: 26.166 26.166 11.107 11.107 30.527 30.527

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the patent application level. Std. err. clustered at the
patent assignee level. Has gene knowledge (share): share gene-disease pairs targeted in a patent that involve genes where the firm has published before;
Patent citations: number of forward patent citations received by the USPTO patent application up to seven years after its publication; Patent family size:
number of patent applications in the same patent family; Market value: estimate of the market value (in constant USD) of the patent using data from
Kogan et al. (2017); note that this measure is available only for applications that are eventually granted, hence the smaller sample size.

Table E.4 reports suggestive evidence that having domain knowledge on a specific gene (as proxied
by past publications) leads to firm patents of higher technological and economic value. The only
partial exception is market value, where the effect vanishes after including firm fixed effects. However,
this is likely due to how the measure of value is constructed from firms’ stock market fluctuations,
which does not allow for the detection of within-firm differences in patent value (Kogan et al., 2017).
Finally, Figure E.4 shows a binscatter plotting the relationship between the average Open Target Score
of gene-disease pairs targeted in a USPTO patent application and the share of those pairs that include
a gene that the firm has previously studied. The figure makes clear that the average therapeutic value
of gene-disease combinations targeted by a patent is higher when involving genes on which the firm

Figure E.4: The average therapeutic value of gene-disease combinations targeted by a patent is higher
when involving genes on which the firm has published before

Note: This figure shows a binscatter plotting the association between the average Open Target Score of gene-disease pairs
targeted in a USPTO patent application and the share of those pairs that include a gene that has been previously studied by
the firm. Both publication counts and Open Targets Scores are residualized by firm-disease fixed effects.
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has published before, previewing the main results of this paper.

E.4 Cortellis Drug Data

I obtain drug development records from Cortellis, which contains development information for 42,896
drugs targeting at least one of the gene-disease pairs in my sample. Cortellis aggregates information
from various sources to assemble a list of historical development milestones for each drug molecule.
This paper’s analyses use those milestones to construct complete drug development histories for each
drug whose genetic target and disease indication is recorded (Krieger, 2021). In particular, I focus
on new molecules observed entering the earliest phases of drug development (what Cortellis records
as the “discovery phase” and the “pre-clinical phase”). In additional analyses reported in the main
text, I follow the approach of Dranove et al. (2022) and weigh each drug by its relative novelty. The
basic intuition of this weighting is that the higher the number of previous drugs that adopted the same
molecular-targeting design, the less scientifically novel the drug is.

Table E.5 confirms the intuition that gene-disease combinations with at least one drug molecule
received a higher number of investments. Pairs with successful drug discovery activities appear in
112 patent applications and 2,176 publications, while the others only receive two patents and 47
publications on average. Interestingly, the difference is much lower when measured using the Open
Target Score. This suggests that research and development inputs might disproportionally target gene-
disease pairs known to be druggable but potentially miss out on other therapeutic opportunities (Oprea
et al., 2018; Stoeger et al., 2018).

Table E.5: Descriptive statistics at the gene-disease pair level.

Gene-disease pairs with drugs Gene-disease pairs without drugs

mean median st d min max N mean median st d min max N

Patents on GDA 112.463 25 319.223 0 13,900 13,582 2.289 0 19.631 0 8,133 7,210,342
Publications on GDA 2,175.96 425 6,192.69 0 173,306 13,582 47.250 2 424.712 0 98,941 7,210,342
Open Targets Score 0.099 0.025 0.158 0.00005 0.897 9,782 0.039 0.007 0.085 0.00004 0.874 584,571
Note: This table presents descriptive statistics at the level of gene-disease pairs. The left part of the table presents descriptives considering only pairs
that have at least one drug molecule listed in the Cortellis data, while the right panel presents descriptives considering only pairs that do not have drug
molecules listed in the Cortellis data as of 2020. Patents on GDA: average count of patents on the gene-disease pair; Publications on GDA: average
count of publications on the gene-disease pair; Open Targets Score: average Open Targets Score of the gene-disease pair.
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F Additional Figures and Tables

Figure F.1: While there is clear evidence of time sorting on the diseases that receive a GWAS, the
same is not true for genes

(a) Average past patents on the diseases by year of first GWAS

(b) Average past patents on the genes by year of first GWAS

Note: Panel (a) shows the average number of patent applications received by each disease before 2005, separately by the
year when the disease received its first GWAS. Panel (b) shows the average number of patent applications received by
each gene before 2005, separately by the year when the gene received its first GWAS. The figure shows that diseases that
received a GWAS earlier in time tend to be those with higher pre-GWAS patenting activity, confirming the prioritization
of large and important diseases, while the same selection is not apparent for genes due to the research design of GWASs.
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Figure F.2: The patterns of gene-disease associations reported by GWASs confirm that they do not
target any gene, unlike candidate-gene studies

(a) Associations introduced by candidate gene studies

(b) Associations introduced by GWASs

Note: Panel (a) shows a heatmap of new gene-disease associations introduced after 2005 with targeted search strategies.
Panel (b) shows a heatmap of new gene-disease associations introduced after 2005 with data-driven search strategies. Both
panels have 14,112 genes on the X axis, sorted from the most to the least studied in the pre-GWAS era, and 15,039 narrow
disease categories on the Y axis, sorted from the most to the least studied in the pre-GWAS era. Darker areas denote a
higher number of new gene-disease associations in correspondence with genes and diseases of that level of popularity in
the pre-GWAS era. Figure from Tranchero (2023) using the DisGeNET database.
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Figure F.3: The timing of GWAS associations is not related to past patenting on gene-diseases pairs,
once controlling for disease selection

(a) Raw association (b) Association conditional on disease choice

Note: These figures show the association between past patent applications of the 17,965 treated gene-disease pairs involving
a protein-coding gene and the year of the first GWAS association reporting them. Panel (a) presents the raw scatterplot.
Panel (b) shows the same scatterplot after residualizing for disease.

Figure F.4: Schema of the between-firms research design used for gene-disease level analyses

Note: This figure exemplifies the between-firm design used to assess the role of domain knowledge in gene-disease level
regressions. Some firms evaluating the plausibility of a GWAS association can leverage their previous research on the
gene involved, thus improving their assessment thanks to a deeper understanding of the gene’s biology.
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Figure F.5: Firms react less to the arrival of GWAS associations when they possess domain knowledge,
regardless of their size

(a) Patents by small firms (b) Patents by large firms

Note: The figure reports OLS coefficients capturing the main effect of GWASs on USPTO patent applications, separately
by firms with and without previous publications on the gene involved. Each coefficient is estimated with the same
specifications reported in Table 4. Panel (a) reports the two estimates for small firms, defined as the ones with a below-
median number of patents in my samples. Panel (b) reports the two estimates for large firms, defined as the ones with an
above-median number of patents in my samples.

Figure F.6: Average increase in patent applications on treated gene-disease pairs, by type of firm

Note: This figure shows the average increase in USPTO patent applications on a gene-disease pair after the publication of
a GWAS (considering only treated pairs). The increase is presented separately for GWAS findings that are not replicated
in subsequent studies and those that are confirmed by later GWASs. The first two columns report the patenting increase by
firms with previous publications on the gene involved, while the latter two columns report the patenting increase by firms
without them.
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Table F.1: No evidence of association between past patenting and the timing of the first GWAS for
treated gene-disease pairs

Dependent Variable: Year of first GWAS

Patents about gene -0.007 -0.014
[-0.65] [-1.87]

Patents about gene-disease -0.040* -0.020
[-2.31] [-1.40]

Disease FE NO YES NO YES
Gene FE NO NO YES YES
N of obs 17,925 17,923 16,338 16,298
Mean of Dep Var: 2015.8 2015.8 2015.8 2015.8

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the
gene-disease association level. Std. err. clustered two-ways at the disease and gene level. This table
shows standardized beta coefficients to ease comparison and reports t-values inside square brackets.
Year of first GWAS: the year when the gene-disease pair was first reported as significant in one GWAS
paper. Patents about gene: sum of USPTO patent applications filed before 2005 that target a specific
gene. Patents about gene-disease: sum of USPTO patent applications filed before 2005 that target a
specific gene-disease pair.

Table F.2: GWAS findings that are subsequently replicated involve gene-disease pairs with a higher
Open Targets Score

Dependent Variable: Open Targets Score Top 90%ile OT Score (0/1)

Replicable association (0/1) 0.0937*** 0.0457*** 0.1909*** 0.1139***
(0.00900) (0.00645) (0.01895) (0.01442)

Gene FE YES YES YES YES
Disease FE YES YES YES YES
Year of GWAS FE YES YES YES YES
Sources Count FE NO YES NO YES
N of GDAs 16,298 8,921 16,298 8,921
Mean of Dep Var: 0.0894 0.0894 0.0998 0.0998

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease association level.
Std. err. clustered at the gene level. Open Targets Score: value of the Open Targets Score of the gene-disease pair. Top 90%ile
OT Score: 0/1 = 1 if the gene-disease pair is in the top decile of Open Targets Score in my sample of GWAS associations.
Replicable association: 0/1 = 1 if the gene-disease association is replicated by subsequent GWASs about the same disease.
Sources Count FE: number of sources aggregated by Open Targets to compute the Score of a given gene-disease pair.
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Table F.3: Correlates of replicable GWAS findings: study design quality.

Dependent Variable: Replicable association (0/1)

Large sample (0/1) 0.3197***
(0.02069)

Replication sample (0/1) 0.2192***
(0.01811)

Powerful genotyping array (0/1) 0.0993***
(0.02237)

Disease FE YES YES YES
Year of GWAS FE YES YES YES
N of GDAs 17,923 17,923 16,161
Mean of Dep Var: 0.1574 0.1574 0.1574

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease
association level. Std. err. clustered at the gene level. Replicable association: 0/1 = 1 if the gene-disease
association is replicated by subsequent GWASs about the same disease. Large sample: 0/1 = 1 for associations
published in studies with a sample size larger than the median GWAS in my sample. Replication sample:
0/1 = 1 for associations reported in papers that include also a replication analysis of their result. Powerful
genotyping array: 0/1 = 1 if the gene-disease association is obtained using a microarray with an above-median
number of SNPs.

Table F.4: Correlates of replicable GWAS findings: citations to the article introducing them.

Dependent Variable: Replicable association (0/1)

Scientific citations to GWAS 172.09***
(35.417)

Clinical citations to GWAS 0.0926***
(0.01761)

Share of negative citations -0.0488**
(0.01525)

Disease FE YES YES YES
Year of GWAS FE YES YES YES
N of GDAs 17,923 17,923 13,732
Mean of Dep Var: 0.1574 0.1574 0.1574

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the
gene-disease association level. Std. err. clustered at the gene level. Replicable association: 0/1 = 1
if the gene-disease association is replicated by subsequent GWASs about the same disease. Scientific
citations to GWAS: number of citations from scientific papers received by the GWAS introducing
the gene-disease association. Clinical citations to GWAS: number of citations from clinical trials
received by the GWAS introducing the gene-disease association. Share of negative citations: share
of citations with a negative tone from scientific papers received by the GWAS introducing the gene-
disease association (data from Scite).
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Table F.5: Firms increase their investments more when the associations are statistically stronger or the
GWASs have better research designs

Dependent Variable: USPTO patent applications

Post × GWAS 0.0432* 0.0779*** 0.0581*** 0.0828*** 0.0432*
(0.02019) (0.02019) (0.01815) (0.01809) (0.01871)

...× High P-value (0/1) 0.2455***
(0.03989)

...× Large effect (0/1) 0.1970***
(0.04246)

...× Top journal (0/1) 0.292***
(0.04810)

...× Large sample (0/1) 0.1830***
(0.04271)

...× Replication sample (0/1) 0.2449***
(0.04007)

Gene-Disease FE YES YES YES YES YES
Disease-Year FE YES YES YES YES YES
Gene-Year FE YES YES YES YES YES
N 137,254,556 137,254,556 137,254,556 137,254,556 137,254,556
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 0.1314 0.1314 0.1314 0.1314 0.1314

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at the disease and gene level. USPTO
patent applications: count of USPTO patent applications filed in a given year that target a specific gene-disease combination. Post × GWAS: 0/1 = 1 in all years after a gene-disease pair is
treated by its first GWAS. High P-value: 0/1 = 1 for associations with a p-value larger than the median GWAS in my sample. Large effect: 0/1 = 1 for associations with an effect size larger
than the median GWAS in my sample. Top journal: 0/1 = 1 for associations published in the 15 most prestigious genetics journals or the top 3 generalist scientific journals (Science, Nature,
PNAS). Large sample: 0/1 = 1 for associations published in studies with a sample size larger than the median GWAS in my sample. Replication sample: 0/1 = 1 for associations reported in
papers that include also a replication analysis of their result.

Table F.6: Firms with genetic domain knowledge introduce new drugs on true positive GWAS findings,
while firms lacking domain knowledge miss these opportunities

Dependent Variable: New drugs by...

...firms with
gene knowledge

...firms w/out
gene knowledge

Post × GWAS 0.000113 -0.0000653 0.000221 -0.0000121
(0.0000691) (0.0000384) (0.0001569) (0.0001093)

...× True Positive 0.000892** 0.0011658
(0.0003058) (0.0006582)

Gene-Disease FE YES YES YES YES
Disease-Year FE YES YES YES YES
Gene-Year FE YES YES YES YES
N 137,254,556 137,254,556 137,254,556 137,254,556
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 0.0000138 0.0000138 0.0000827 0.0000827

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at
the disease and gene level. New drugs: number of molecules on a gene-disease combination entering the discovery stage (data from Cortellis); the count is
then divided between firms with and without previous publications on the gene. Post × GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its
first GWAS. True Positive: 0/1 = 1 for GWAS findings that are later replicated by another GWAS about the same disease.
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Table F.7: Firms without domain knowledge struggle more to recognize opportunities when the GWAS
association involves less-studied genes

Dependent Variable: USPTO patent applications by...

... all firms ...firms with
gene knowledge

...firms w/out
gene knowledge

Post × GWAS 0.0123** 0.0024** 0.0099*
(0.00462) (0.00092) (0.00431)

...× True Positive 0.0265 0.0202* 0.0063
(0.01458) (0.00876) (0.00891)

Gene-Disease FE YES YES YES
Disease-Year FE YES YES YES
Gene-Year FE YES YES YES
N 66,980,776 66,980,776 66,980,776
N of Gene-Diseases 3,525,304 3,525,304 3,525,304
Mean of Dep Var: 0.02097 0.00072 0.02026

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err.
clustered two-ways at the disease and gene level. USPTO patent applications: count of USPTO patent applications filed in a given year
that target a specific gene-disease combination; the count is then divided between firms with and without previous publications on the
gene. Post × GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS. The sample is restricted to gene-disease
pairs involving genes that received a below-median number of scientific studies before 2005 (the year of the first GWAS).

Table F.8: Firms without domain knowledge invest proportionally less in false positives when the
GWASs report a smaller number of associations

Dependent Variable: USPTO patent applications by...

... all firms ...firms with
gene knowledge

...firms w/out
gene knowledge

Post × GWAS 0.0670** 0.01935 0.04768**
(0.02019) (0.00982) (0.01385)

...× True Positive 0.6382*** 0.1535** 0.4848***
(0.10028) (0.05037) (0.07703)

Gene-Disease FE YES YES YES
Disease-Year FE YES YES YES
Gene-Year FE YES YES YES
N 137,084,183 137,084,183 137,084,183
N of Gene-Diseases 7,214,957 7,214,957 7,214,957
Mean of Dep Var: 0.13088 0.03741 0.09346

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered
two-ways at the disease and gene level. USPTO patent applications: count of USPTO patent applications filed in a given year that target
a specific gene-disease combination; the count is then divided between firms with and without previous publications on the gene. Post ×
GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS, excluding studies that report an above-median number
of associations (i.e., larger than 55).
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Table F.9: Results are robust to the exclusion of GWASs with an industry co-author or that acknowledge
funding from a pharmaceutical firm

Dependent Variable: USPTO patent applications by...

...all firms ...firms with
gene knowledge

...firms w/out
gene knowledge

Post × GWAS 0.1263*** 0.0669*** 0.0319** 0.0148 0.0944*** 0.0522***
(0.02182) (0.01856) (0.01146) (0.00979) (0.01328) (0.01165)

...× True Positive 0.4433*** 0.1278* 0.3155***
(0.11117) (0.05833) (0.06512)

Gene-Disease FE YES YES YES YES YES YES
Disease-Year FE YES YES YES YES YES YES
Gene-Year FE YES YES YES YES YES YES
N 137,167,422 137,167,422 137,167,422 137,167,422 137,167,422 137,167,422
N of Gene-Diseases 7,219,338 7,219,338 7,219,338 7,219,338 7,219,338 7,219,338
Mean of Dep Var: 0.1308 0.1308 0.0373 0.0373 0.0934 0.0934

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at the disease and gene level. USPTO
patent applications: count of USPTO patent applications filed in a given year that target a specific gene-disease combination; the count is then divided between firms with and without previous
publications on the gene. Post × GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS, excluding all GWASs with either a co-author working in a pharmaceutical
company or acknowledging financial support from private firms. True Positive: 0/1 = 1 for GWAS findings that are later replicated by another GWAS about the same disease.

Table F.10: Investments in false positive GWAS findings seem not driven by strategic considerations,
but follow patterns consistent with firms making mistakes

Dependent Variable Strategic
patent (0/1)

Continuation
patent (0/1)

Litigated
patent (0/1)

Expired
patent (0/1)

Post × GWAS 0.0006 0.0094*** 0.0022 -0.0039***
(0.00046) (0.00139) (0.00119) (0.00072)

...× True Positive 0.0089*** 0.0306*** 0.0186*** -0.0095***
(0.00172) (0.00381) (0.00340) (0.00236)

Gene-Disease FE YES YES YES YES
Disease-Year FE YES YES YES YES
Gene-Year FE YES YES YES YES
N 137,254,556 137,254,556 137,254,556 137,254,556
N of Gene-Diseases 7,223,924 7,223,924 7,223,924 7,223,924
Mean of Dep Var: 0.0023 0.0339 0.0282 0.0100

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered
two-ways at the disease and gene level. Strategic patent: 0/1=1 if the gene gene-disease combination received at least one strategic patent according
to the definition by Abrams et al. (2018). Continuation patent: 0/1=1 if the gene gene-disease combination received at least one continuation patent
according to the definition by Righi and Simcoe (2020). Litigated patent: 0/1=1 if the gene gene-disease combination received at least one patent
that was subsequently involved in litigation. Expired patent: 0/1=1 if the gene gene-disease combination received at least one patent that was not
subsequently renewed. Post × GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first GWAS, excluding all GWASs with either a
co-author working in a pharmaceutical company or acknowledging financial support from private firms. True Positive: 0/1 = 1 for GWAS findings
that are later replicated by another GWAS about the same disease.
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Table F.11: No evidence of innovation spillovers on gene-disease pairs proximate to those treated by
false positive GWAS associations

Dependent Variable: Cit-weighted patents Patent market value Drugs (total) Drugs (weighted)

Post × GWAS Spillover 0.2206 -0.0361 -0.000049 -0.000005
(0.21480) (0.05840) (0.00006) (0.00002)

Gene-Disease FE YES YES YES YES
Disease-Year FE YES YES YES YES
Gene-Year FE YES YES YES YES
N 136,913,221 136,913,221 136,913,221 136,913,221
N of Gene-Diseases 7,205,959 7,205,959 7,205,959 7,205,959
Mean of Dep Var: 7.0851 0.6229 0.0002 0.0001

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at the
disease and gene level. Post × GWAS Spillover: 0/1 = 1 in all years after a neighboring gene-disease pair is treated by its first GWAS; neighbor pairs are defined
as involving the same gene and a disease sharing the same 3-digit patent MeSH code than the ones in the GWAS. Cit-weighted patents: count of USPTO patent
applications filed in a given year that target a specific gene-disease combination, weighted by the number of patent citations received up to seven years after
patent publication. Patent value: estimated stock market value (in constant USD) of patents granted to public firms using data from Kogan et al. (2017). Drugs
(total): number of molecules on a gene-disease combination entering the discovery stage. Drugs (weighted): number of molecules on a gene-disease combination
entering the discovery stage weighted by their scientific novelty (i.e., by the number of times that the same mechanism of action has been used before, following
Dranove et al. 2022).

Table F.12: Firms with domain knowledge invest proportionally more on higher-quality gene-disease
combinations

Dependent Variable: USPTO patent applications by...

...firms with gene knowledge ...firms w/out gene knowledge

Post × GWAS 0.0061 0.0871*** 0.1334** 0.0919* 0.1793*** 0.1833**
(0.01962) (0.02619) (0.04119) (0.04219) (0.03463) (0.05579)

Gene-Disease FE YES YES YES YES YES YES
Disease-Year FE YES YES YES YES YES YES
Gene-Year FE YES YES YES YES YES YES
N 588,069 9,550,920 1,091,265 588,069 9,550,920 1,091,265
N of Gene-Diseases 30,951 502,680 57,435 30,951 502,680 57,435
Mean of Dep Var: 0.0607 0.3359 0.5363 0.194 0.5944 0.8484
Sample: <10 OT Score 10 <OT Score <90 >90 OT Score <10 OT Score 10 <OT Score <90 >90 OT Score

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease-year level. Std. err. clustered two-ways at the disease and gene level. The sample is
limited to gene-disease pairs for which an Open Targets Score could be matched. Columns 1 and 4 include only gene-disease pairs with an Open Targets Score below the tenth percentile of the
sample. Columns 2 and 5 include only gene-disease pairs with an Open Targets Score between the tenth and the ninetieth percentile of the sample. Columns 3 and 6 include only gene-disease pairs
with an Open Targets Score above the ninetieth percentile of the sample. USPTO patent applications: count of USPTO patent applications filed in a given year that target a specific gene-disease
combination; the count is then divided between firms with and without previous publications on the gene. Post × GWAS: 0/1 = 1 in all years after a gene-disease pair is treated by its first true
positive GWAS.
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Table F.13: The results for false positives of Table 6 are robust to alternative definitions of the risk set
of GWASs evaluated by a given firm

Dependent Variable: USPTO patent applications

Share of patent portfolio: >0.005 >0.01 >0.02 >0.05 >0.1

Has Gene Knowledge (0/1) -0.1155*** -0.1082*** -0.0895** -0.1080*** -0.1712***
(0.01642) (0.01722) (0.02690) (0.02089) (0.01818)

Firm-Disease FE YES YES YES YES YES
N of firms 3765 3752 3666 2784 1562
N of obs 3,546,300 2,618,859 1,515,477 534,200 202,376
Mean of Dep Var: 0.0062 0.0056 0.0053 0.0043 0.0032

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the firm-gene-disease level. Std. err. clustered
two-ways at the disease and gene level. Each column is estimated from a separate regression using a progressively more stringent risk set
of GWASs evaluated, defined as those involving diseases constituting a certain share of a firm’s patent portfolio. The sample is restricted to
false-positive GWASs. USPTO patent applications: count of USPTO patent applications filed in a given year that target a specific gene-disease
combination. Has Gene Knowledge (0/1): 0/1 = 1 if the firm has at least one publication about the specific gene before the GWAS associated
it with a disease.

Table F.14: The results for true positives of Table 6 are robust to alternative definitions of the risk set
of GWASs evaluated by a given firm

Dependent Variable: USPTO patent applications

Share of patent portfolio: >0.005 >0.01 >0.02 >0.05 >0.1

Has Gene Knowledge (0/1) 0.2708*** 0.3336*** 0.4992*** 0.7730** 0.7808
(0.06344) (0.06788) (0.11716) (0.28434) (0.44003)

Firm-Disease FE YES YES YES YES YES
N of firms 3,629 3,601 3,487 2,485 1,291
N of obs 1,159,770 867,620 514,864 192,353 75,732
Mean of Dep Var: 0.0247 0.024 0.025 0.0278 0.0032

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the firm-gene-disease level. Std. err. clustered
two-ways at the disease and gene level. Each column is estimated from a separate regression using a progressively more stringent risk set of
GWASs evaluated, defined as those involving diseases constituting a certain share of a firm’s patent portfolio. The sample is restricted to true
positive GWASs. USPTO patent applications: count of USPTO patent applications filed in a given year that target a specific gene-disease
combination. Has Gene Knowledge (0/1): 0/1 = 1 if the firm has at least one publication about the specific gene before the GWAS associated
it with a disease.
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Table F.15: Descriptive evidence that firms delaying investments in a GWAS finding are less likely to
choose false positives, but also less likely to obtain highly cited patents or drugs

Dependent Variable False positive Cit-weighted
patents Drugs (total) Drugs (weighted)

Years Waited
to First Patent -0.0248*** -1.7812*** -0.0001 -0.0005*

(0.0028) (0.1510) (0.0003) (0.0002)

Firm FE YES YES YES YES
Disease FE YES YES YES YES

N of firms 225 225 225 225
N of obs 30615 30615 30615 30615
Mean of Dep Var: 0.5310 34.861 0.0081 0.0047

Note: *, **,*** denote significance at 5%, 1% and 0.1% level respectively. Observations at the gene-disease association level. Std.
err. clustered two-ways at the disease and gene level. Years Waited to First Patent: count of years between the GWAS publication and
the firm first patent application targeting the gene-disease pair. False positive: 0/1=1 if the gene-disease association is not subsequently
replicated. Cit-weighted patent: count of USPTO patent applications filed in a given year that target a specific gene-disease combination,
weighted by the number of patent citations received up to seven years after patent publication. Drugs (total): number of molecules
on a gene-disease combination entering the discovery stage. Drugs (weighted): number of molecules on a gene-disease combination
entering the discovery stage weighted by their scientific novelty (i.e., by the number of times that the same mechanism of action has
been used before, following Dranove et al. 2022).
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